Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Measurements
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Organization, W.H. Obesity and Overweight: Fact Sheet N 311. 2015. Available online: http://www who int/mediacentre/factsheets/fs311/en (accessed on 1 March 2018).
- Pan, W.H.; Wu, H.J.; Yeh, C.J.; Chuang, H.Y.; Yeh, N.H.; Hsieh, Y.T. Diet and Health Trends in Taiwan: Comparison of Two Nutrition and Health Surveys from 1993–1996 and 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 238–250. [Google Scholar] [PubMed]
- Oqden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Fleqal, K.M. Prevalence of Overweight and Obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.S.; Woo, J. Prevention of Overweight and Obesity: How Effective is the Current Public Health Approach. Int. J. Environ. Res. Public Health 2010, 7, 765–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldaña-Alvarez, Y.; Salas-Martínez, M.G.; García-Ortiz, H.; Luckie-Duque, A.; García-Cárdenas, G.; Vicenteño-Ayala, H.; Cordova, E.J.; Esparza-Aguilar, M.; Contreras-Cubas, C.; Carnevale, A.; et al. Gender-Dependent Association of FTO Polymorphisms with Body Mass Index in Mexicans. PLoS ONE 2016, 11, e0145984. [Google Scholar] [CrossRef] [PubMed]
- Consortium, W.T.C.C. Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3000 Shared Controls. Nature 2007, 447, 661–678. [Google Scholar]
- Berulava, T.; Horsthemke, B. The Obesity-Associated SNPs in Intron 1 of the FTO Gene Affect Primary Transcript Levels. Eur. J. Hum. Genet. 2010, 18, 1054–1056. [Google Scholar] [CrossRef]
- Hertel, J.K.; Johansson, S.; Raeder, H.; Midthjell, K.; Lyssenko, V.; Groop, L.; Molven, A.; Njølstad, P.R. Genetic Analysis of Recently Identified Type 2 Diabetes Loci in 1,638 Unselected Patients with Type 2 Diabetes and 1,858 Control Participants from a Norwegian Population-Based Cohort (the HUNT Study). Diabetologia 2008, 51, 971–977. [Google Scholar] [CrossRef]
- Hotta, K.; Nakata, Y.; Matsuo, T.; Kamohara, S.; Kotani, K.; Komatsu, R.; Itoh, N.; Mineo, I.; Wada, J.; Masuzaki, H.; et al. Variations in the FTO Gene are Associated with Severe Obesity in the Japanese. J. Hum. Genet. 2008, 53, 546–553. [Google Scholar] [CrossRef]
- Villalobos-Comparán, M.; Flores-Dorantes, M.T.; Villarreal-Molina, M.T.; Rodríguez-Cruz, M.; García-Ulloa, A.C.; Robles, L.; Huertas-Vázquez, A.; Saucedo-Villarreal, N.; López-Alarcón, M.; Sánchez-Muñoz, F.; et al. The FTO Gene is Associated with Adulthood Obesity in the Mexican Population. Obesity 2008, 16, 2296–2301. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, H.; Lagou, V.; Gutin, B.; Stallmann-Jorgensen, I.S.; Treiber, F.A.; Dong, Y.; Snieder, H. FTO Variant Rs9939609 is Associated with Body Mass Index and Waist Circumference, but not with Energy Intake or Physical Activity in European-And African-American Youth. BMC Med. Genet. 2010, 11, 57. [Google Scholar] [CrossRef]
- Speliotes, E.K.; Willer, C.J.; Berndt, S.I.; Monda, K.L.; Thorleifsson, G.; Jackson, A.U.; Lango Allen, H.; Lindgren, C.M.; Luan, J.; Mägi, R.; et al. Association Analyses of 249,796 Individuals Reveal 18 New Loci Associated with Body Mass Index. Nat. Genet. 2010, 42, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, Y.; Sun, B.-F.; Zhao, Y.-L.; Yang, Y.-G. FTO and Obesity: Mechanisms of Association. Curr. Diabetes Rep. 2014, 14, 486. [Google Scholar] [CrossRef]
- Yeo, G.S.; O’Rahilly, S. Uncovering the Biology of FTO. Mol. Metab. 2012, 1, 32–36. [Google Scholar] [CrossRef]
- Fischer, J.; Koch, L.; Emmerling, C.; Vierkotten, J.; Peters, T.; Brüning, J.C.; Rüther, U. Inactivation of the FTO Gene Protects from Obesity. Nature 2009, 458, 894–898. [Google Scholar] [CrossRef]
- Stratigopoulos, G.; Carli, J.F.M.; O’Day, D.R.; Wang, L.; Leduc, C.A.; Lanzano, P.; Chung, W.K.; Rosenbaum, M.; Egli, D.; Doherty, D.A.; et al. Hypomorphism for RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice. Cell Metab. 2014, 19, 767–779. [Google Scholar] [CrossRef]
- Smemo, S.; Tena, J.J.; Kim, K.-H.; Gamazon, E.R.; Sakabe, N.J.; Gómez-Marín, C.; Aneas, I.; Credidio, F.L.; Sobreira, D.R.; Wasserman, N.F.; et al. Obesity-Associated Variants within FTO form Long-Range Functional Connections with IRX3. Nature 2014, 507, 371–375. [Google Scholar] [CrossRef]
- Ragvina, A.; Moroc, E.; Fredmand, D.; Navratilova, P.; Drivenes, Ø.; Engström, P.G.; Alonso, M.E.; de la Calle Mustienes, E.; Gómez Skarmeta, J.L.; Tavares, M.J.; et al. Long-Range Gene Regulation Links Genomic Type 2 Diabetes and Obesity Risk Regions to HHEX, SOX4, and IRX3. Proc. Natl. Acad. Sci. USA 2011, 108, 775–780. [Google Scholar] [CrossRef]
- Jowett, J.B.; Curran, J.E.; Johnson, M.P.; Carless, M.A.; Göring, H.H.H.; Dyer, T.D.; Cole, S.A.; Comuzzie, A.G.; MacCluer, J.W.; Moses, E.K.; et al. Genetic Variation at the FTO Locus Influences RBL2 Gene Expression. Diabetes 2010, 59, 726–732. [Google Scholar] [CrossRef]
- Rampersaud, E.; Mitchell, B.D.; Pollin, T.I.; Fu, M.; Shen, H.; O’Connell, J.R.; Ducharme, J.L.; Hines, S.; Sack, P.; Naglieri, R.; et al. Physical Activity and the Association of Common FTO Gene Variants with Body Mass Index and Obesity. Arch. Intern. Med. 2008, 168, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, C.H.; Stender-Petersen, K.L.; Mogensen, M.S.; Torekov, S.S.; Wegner, L.; Andersen, G.; Nielsen, A.L.; Albrechtsen, A.; Borch-Johnsen, K.; Rasmussen, S.S.; et al. Low Physical Activity Accentuates the Effect of the FTO Rs9939609 Polymorphism on Body Fat Accumulation. Diabetes 2008, 57, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Li, S.; Zhao, J.H.; Luan, J.A.; Bingham, S.; Khaw, K.-T.; Ekelund, U.; Wareham, N.J.; Loos, R.J. Physical Activity Attenuates the Body Mass Index–Increasing Influence of Genetic Variation in the FTO Gene. Am. J. Clin. Nutr. 2009, 90, 425–428. [Google Scholar] [CrossRef]
- Tan, J.T.; Dorajoo, R.; Seielstad, M.; Sim, X.L.; Ong, R.T.-H.; Chia, K.S.; Wong, T.Y.; Saw, S.M.; Chew, S.K.; Aung, T.; et al. FTO Variants Are Associated with Obesity in the Chinese and Malay Populations in Singapore. Diabetes 2008, 57, 2851–2857. [Google Scholar] [CrossRef]
- Jónsson, Á.; Renström, F.; Lyssenko, V.; Brito, E.C.; Isomaa, B.; Berglund, G.; Nilsson, P.M.; Groop, L.; Franks, P.W. Assessing the Effect of Interaction between an FTO Variant (Rs9939609) and Physical Activity on Obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia 2009, 52, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Harbron, J.; Van Der Merwe, L.; Zaahl, M.G.; Kotze, M.J.; Senekal, M. Fat Mass and Obesity-Associated (FTO) Gene Polymorphisms Are Associated with Physical Activity, Food Intake, Eating Behaviors, Psychological Health, and Modeled Change in Body Mass Index in Overweight/Obese Caucasian Adults. Nutrients 2014, 6, 3130–3152. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; DeMenna, J.T.; Puppala, S.; Chittoor, G.; Schneider, J.; Duggirala, R.; Mandarino, L.J.; Shaibi, G.Q.; Coletta, D.K. Physical Activity and FTO Genotype by Physical Activity Interactive Influences on Obesity. BMC Genet. 2016, 17, 1549. [Google Scholar] [CrossRef] [PubMed]
- Kilpeläinen, T.O.; Qi, L.; Brage, S.; Sharp, S.J.; Sonestedt, E.; Demerath, E.; Ahmad, T.; Mora, S.; Kaakinen, M.; Sandholt, C.H.; et al. Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children. PLoS Med. 2011, 8, e1001116. [Google Scholar] [CrossRef]
- Wu, J.; Xu, J.; Zhang, Z.; Ren, J.; Li, Y.; Wang, J.; Cao, Y.; Rong, F.; Zhao, R.; Huang, X.; et al. Association of FTO Polymorphisms with Obesity and Metabolic Parameters in Han Chinese Adolescents. PLoS ONE 2014, 9, e98984. [Google Scholar] [CrossRef]
- Fawcett, K.A.; Barroso, I. The Genetics of Obesity: FTO Leads the Way. Trends Genet. 2010, 26, 266–274. [Google Scholar] [CrossRef]
- Gostynski, M.; Gutzwiller, F.; Kuulasmaa, K.; Döring, A.; Ferrario, M.; Grafnetter, D.; Pajak, A. Analysis of the Relationship between Total Cholesterol, Age, Body Mass Index among Males and Females in the WHO MONICA Project. Int. J. Obes. 2004, 28, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Walli, R.R.; Almosrati, R.A.; Zaied, A.A.; Shummakhi, F.M.E.; Bredae, E.G.; Shalaka, O.K. The Relationship between Habitual Coffee and Tea Consumption and Type 2 Diabetes Mellitus among Libyan Adults. Int. J. Pharma Res. Rev. 2015, 4, 34–39. [Google Scholar]
- Wang, T.; Huang, T.; Kang, J.H.; Zheng, Y.; Jensen, M.K.; Wiggs, J.L.; Pasquale, L.R.; Fuchs, C.S.; Campos, H.; Rimm, E.B.; et al. Habitual Coffee Consumption and Genetic Predisposition to Obesity: Gene-Diet Interaction Analyses in Three US Prospective Studies. BMC Med. 2017, 15, 97. [Google Scholar] [CrossRef]
- Ahmad, S.; Rukh, G.; Varga, T.V.; Ali, A.; Kurbasic, A.; Shungin, D.; Ericson, U.; Koivula, R.W.; Chu, A.Y.; Rose, L.M.; et al. Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry. PLoS Genet. 2013, 9, e1003607. [Google Scholar] [CrossRef] [PubMed]
- Plurphanswat, N.; Rodu, B. The Association of Smoking and Demographic Characteristics on Body Mass Index and Obesity among Adults in the U.S., 1999–2012. BMC Obes. 2014, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Chiolero, A.; Faeh, D.; Paccaud, F.; Cornuz, J. Consequences of Smoking for Body Weight, Body Fat Distribution, and Insulin Resistance. Am. J. Clin. Nutr. 2008, 87, 801–809. [Google Scholar] [CrossRef]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of Vegetarian Diet, Body Weight, and Prevalence of Type 2 Diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Total | GG (n = 8321) | TG (n = 2343) | TT (n = 168) | p-Value |
---|---|---|---|---|---|
Age (years) | 48.68 ± 0.11 | 48.64 ± 0.12 | 48.78 ± 0.23 | 49.13 ± 0.90 | 0.7433 |
BMI (kg/m2) | 24.35 ± 0.03 | 24.27 ± 0.04 | 24.58 ± 0.08 | 25.21 ± 0.26 | <0.0001 |
Fasting blood glucose(mg/dl) | 96.49 ± 0.20 | 96.36 ± 0.23 | 96.69 ± 0.43 | 100.43 ± 2.18 | 0.0398 |
Total cholesterol (mg/dl) | 193.76 ± 0.34 | 193.93 ± 0.39 | 193.10 ± 0.74 | 194.58 ± 2.43 | 0.5763 |
Sex (n, %) | |||||
Male | 5219 (48.09) | 4002 (48.06) | 1106 (47.20) | 101 (60.12) | 0.0053 |
Female | 5634 (51.91) | 4319 (51.90) | 1237 (52.80) | 67 (39.88) | |
Alcohol intake | |||||
Never/Former | 9992 (92.08) | 7641 (91.84) | 2180 (93.04) | 151 (89.88) | 0.0930 |
Current | 860 (7.92) | 679 (8.16) | 163 (6.96) | 17 (10.12) | |
Smoking | |||||
No | 7451 (68.70) | 5743 (69.50) | 1583 (67.65) | 111 (66.07) | 0.3299 |
Yes | 3395 (31.30) | 2574 (30.95) | 757 (32.35) | 57 (33.93) | |
Physical activity | |||||
No | 6426 (59.21) | 4944 (59.42) | 1368 (58.39) | 102 (60.71) | 0.6154 |
Yes | 4426 (40.79) | 3376 (40.58) | 975 (41.61) | 66 (39.29) | |
Tea consumption | |||||
No 5655 (63.06) | 4353 (63.26) | 1213 (62.82) | 78 (56.52) | 0.2591 | |
Yes | 3312 (36.94) | 2528 (36.74) | 718 (37.18) | 60 (43.48) | |
Coffee consumption | |||||
No | 6086 (67.87) | 4668 (67.84) | 1320 (68.36) | 84 (60.87) | 0.1910 |
Yes | 2881 (32.13) | 2213 (32.16) | 611 (31.64) | 54 (39.13) | |
Vegetarian Diet | |||||
Never/Former | 8551 (95.36) | 6570 (95.48) | 1836 (95.08) | 129 (93.48) | 0.4335 |
Current | 416 (4.64) | 311 (4.52) | 95 (4.92) | 9 (6.52) |
Parameters | Physically Active (n = 4426) | Physically Inactive (n = 6426) | p-Value |
---|---|---|---|
rs3751812 (n, %) | |||
GG | 3376 (76.43) | 4944 (77.08) | 0.6154 |
TG | 975 (22.07) | 1368 (21.33) | |
TT | 66 (1.49) | 102 (1.59) | |
Age (years) | 53.36 ± 0.15 | 45.45 ± 0.13 | <0.0001 |
BMI (kg/m2) | 24.24 ± 0.05 | 24.42 ± 0.05 | 0.0083 |
Fasting glucose (mg/dl) | 97.93 ± 0.32 | 95.50 ± 0.26 | <0.0001 |
Total cholesterol (mg/dl) | 195.68 ± 0.53 | 192.44 ± 0.45 | <0.0001 |
Sex (n, %) | |||
Male | 2158 (48.76) | 3061 (47.63) | 0.2500 |
Female | 2268 (51.24) | 3365 (52.37) | |
Alcohol drinking | |||
Never/Former | 4080 (92.18) | 5911 (92.00) | 0.7294 |
Current | 346 (7.82) | 514 (8.00) | |
Smoking | |||
No | 3144 (71.05) | 4306 (67.07) | <0.0001 |
Yes | 1281 (28.95) | 2114 (32.93) | |
Tea consumption | |||
No | 2340 (62.37) | 3315 (63.57) | 0.2455 |
Yes | 1412 (37.63) | 1900 (36.43) | |
Coffee consumption | |||
No | 2581 (68.79) | 3505 (67.21) | 0.1140 |
Yes | 1171 (31.21) | 1710 (32.79) | |
Vegetarian diet | |||
Never/Former | 3598 (95.90) | 4953 (94.98) | 0.0411 |
Current | 154 (4.10) | 262 (5.02) |
β | p-Value | |
---|---|---|
rs3751812 | ||
GG | - | |
TG | 0.381 | <0.0001 |
TT | 0.684 | 0.0204 |
p for trend < 0.0001 | ||
Physical activity | −0.389 | <0.0001 |
Sex | 1.384 | <0.0001 |
Age | 0.020 | <0.0001 |
Total cholesterol | 0.008 | <0.0001 |
Alcohol intake | 0.092 | 0.5267 |
Smoking | 0.501 | <0.0001 |
Tea consumption | 0.492 | <0.0001 |
Coffee consumption | 0.108 | 0.1723 |
Vegetarian diet | −0.343 | 0.0493 |
GG | TG | TT | ||||
---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | |
Physical activity | −0.368 | <0.0001 | −0.414 | 0.0175 | −1.059 | 0.1099 |
Sex | 1.461 | <0.0001 | 1.196 | <0.0001 | 0.850 | 0.1984 |
Age | 0.019 | <0.0001 | 0.026 | 0.0013 | 0.014 | 0.6146 |
Total cholesterol | 0.008 | <0.0001 | 0.008 | 0.0003 | 0.004 | 0.6724 |
Alcohol intake | 0.060 | 0.7148 | −0.008 | 0.9819 | 2.065 | 0.0337 |
Smoking | 0.387 | 0.0003 | 0.860 | <0.0001 | 0.885 | 0.2209 |
Tea consumption | 0.488 | <0.0001 | 0.516 | 0.0031 | 0.499 | 0.3737 |
Coffee consumption | 0.212 | 0.0179 | −0.215 | 0.2260 | −0.641 | 0.2823 |
Vegetarian diet | −0.516 | 0.0098 | 0.166 | 0.6626 | 0.401 | 0.7291 |
Physical Activity | Physical Inactivity | |||
---|---|---|---|---|
β | p-Value | β- | p-Value | |
rs3751812 | ||||
GG | - | - | - | - |
TG | 0.360 | 0.0032 | 0.381 | 0.0021 |
TT | 0.245 | 0.5606 | 0.950 | 0.0188 |
p trend = 0.0002 | ||||
Sex | 1.150 | <0.0001 | 1.517 | <0.0001 |
Age | 0.006 | 0.2077 | 0.030 | <0.0001 |
Total cholesterol | 0.003 | 0.0741 | 0.011 | <0.0001 |
Alcohol drinking | 0.460 | 0.0241 | −0.192 | 0.3374 |
Smoking | 0.439 | 0.0012 | 0.514 | <0.0001 |
Tea consumption | 0.565 | <0.0001 | 0.417 | 0.0001 |
Coffee consumption | 0.270 | 0.0150 | −0.017 | 0.8746 |
Vegetarian diet | −0.626 | 0.0152 | −0.224 | 0.3401 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaw, Y.-C.; Liaw, Y.-P.; Lan, T.-H. Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan. Genes 2019, 10, 354. https://doi.org/10.3390/genes10050354
Liaw Y-C, Liaw Y-P, Lan T-H. Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan. Genes. 2019; 10(5):354. https://doi.org/10.3390/genes10050354
Chicago/Turabian StyleLiaw, Yi-Ching, Yung-Po Liaw, and Tsuo-Hung Lan. 2019. "Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan" Genes 10, no. 5: 354. https://doi.org/10.3390/genes10050354
APA StyleLiaw, Y. -C., Liaw, Y. -P., & Lan, T. -H. (2019). Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan. Genes, 10(5), 354. https://doi.org/10.3390/genes10050354