Impact of Acute Aerobic Exercise on Genome-Wide DNA-Methylation in Natural Killer Cells—A Pilot Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Incremental Step Test
2.2. Blood Sampling and NK-Cell Isolation
2.3. DNA Isolation
2.4. Genome-Wide DNA-Methylation
2.5. Gene Ontology
2.6. Flow Cytometry
2.7. Statistics
3. Results
3.1. Participants Characteristics
3.2. Genome-Wide DNA-Methylation
3.3. Gene Ontology
3.4. Distribution of NK-Cell Subsets CD56bright and CD56dim
4. Discussion
4.1. Genome-Wide DNA-Methylation
4.2. Distribution of NK-Cell Subsets
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cerwenka, A.; Lanier, L.L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 2001, 1, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bosch, J. The human immune system: Innate immunity. The role of natural killer cells in innate immunity. In Exercise Immunology; Gleeson, M., Bishop, N., Walsh, N., Eds.; Routledge: Abingdon, UK, 2013; pp. 34–35. ISBN 978-0-415-50726-4. [Google Scholar]
- Zimmer, P.; Schenk, A.; Kieven, M.; Holthaus, M.; Lehmann, J.; Lövenich, L.; Bloch, W. Exercise induced alterations in NK-cell cytotoxicity—Methodological issues and future perspectives. Exerc. Immunol. Rev. 2017, 23, 66–81. [Google Scholar] [PubMed]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar] [PubMed]
- Bigley, A.B.; Rezvani, K.; Chew, C.; Sekine, T.; Pistillo, M.; Crucian, B.; Bollard, C.M.; Simpson, R.J. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav. Immun. 2014, 39, 160–171. [Google Scholar] [CrossRef] [PubMed]
- McGee, S.L.; Fairlie, E.; Garnham, A.P.; Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 2009, 587, 5951–5958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, K.; Takeoka, M.; Mori, M.; Hashimoto, S.; Sakurai, A.; Nose, H.; Higuchi, K.; Itano, N.; Shiohara, M.; Oh, T.; et al. Exercise effects on methylation of ASC gene. Int. J. Sports Med. 2010, 31, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F.; Zhuang, Y.; Feng, J.; Ying, Z.; Fan, G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur. J. Neurosci. 2011, 33, 383–390. [Google Scholar] [CrossRef]
- Rönn, T.; Volkov, P.; Davegårdh, C.; Dayeh, T.; Hall, E.; Olsson, A.H.; Nilsson, E.; Tornberg, A.; Dekker Nitert, M.; Eriksson, K.-F.; et al. A six months exercise intervention influences the genome-wide DNA-methylation pattern in human adipose tissue. PLoS Genet. 2013, 9, e1003572. [Google Scholar] [CrossRef]
- Holliday, R. Epigenetics: A historical overview. Epigenetics 2006, 1, 76–80. [Google Scholar] [CrossRef]
- Denham, J.; O’Brien, B.J.; Marques, F.Z.; Charchar, F.J. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J. Appl. Physiol. 2015, 118, 475–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson-Ansley, P.J.; Saini, A.; Toms, C.; Ansley, L.; Walshe, I.H.; Nimmo, M.A.; Curtin, J.A. Dynamic changes in DNA-methylation status in peripheral blood Mononuclear cells following an acute bout of exercise: Potential impact of exercise-induced elevations in interleukin-6 concentration. J. Biol. Regul. Homeost. Agents 2014, 28, 407–417. [Google Scholar]
- Horsburgh, S.; Todryk, S.; Toms, C.; Moran, C.N.; Ansley, L. Exercise-conditioned plasma attenuates nuclear concentrations of DNA methyltransferase 3B in human peripheral blood mononuclear cells. Physiol. Rep. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, P.; Bloch, W.; Schenk, A.; Zopf, E.M.; Hildebrandt, U.; Streckmann, F.; Beulertz, J.; Koliamitra, C.; Schollmayer, F.; Baumann, F. Exercise-induced Natural Killer Cell Activation is Driven by Epigenetic Modifications. Int. J. Sports Med. 2015, 36, 510–515. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Baragaño Raneros, A.; Carvajal Palao, R.; Sanz, A.B.; Ortiz, A.; Ortega, F.; Suárez-Álvarez, B.; López-Larrea, C. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells. Epigenetics 2013, 8, 66–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, A.; Pulverer, W.; Koliamitra, C.; Bauer, C.J.; Ilic, S.; Heer, R.; Schier, R.; Schick, V.; Böttiger, B.W.; Gerhäuser, C.; et al. Acute Exercise Increases the Expression of KIR2DS4 by Promoter Demethylation in NK Cells. Int. J. Sports Med. 2018, 40, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Tremblay, B.L.; Guénard, F.; Rudkowska, I.; Lemieux, S.; Couture, P.; Vohl, M.-C. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin. Epigenetics 2017, 9, 43. [Google Scholar] [CrossRef]
- King-Himmelreich, T.S.; Schramm, S.; Wolters, M.C.; Schmetzer, J.; Möser, C.V.; Knothe, C.; Resch, E.; Peil, J.; Geisslinger, G.; Niederberger, E. The impact of endurance exercise on global and AMPK gene-specific DNA-methylation. Biochem. Biophys. Res. Commun. 2016, 474, 284–290. [Google Scholar] [CrossRef]
- Barrès, R.; Yan, J.; Egan, B.; Treebak, J.T.; Rasmussen, M.; Fritz, T.; Caidahl, K.; Krook, A.; O’Gorman, D.J.; Zierath, J.R. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012, 15, 405–411. [Google Scholar] [CrossRef]
- Fabre, O.; Ingerslev, L.R.; Garde, C.; Donkin, I.; Simar, D.; Barrès, R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics 2018, 10, 1033–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooren, F.C.; Lechtermann, A.; Völker, K. Exercise-induced apoptosis of lymphocytes depends on training status. Med. Sci. Sports Exerc. 2004, 36, 1476–1483. [Google Scholar] [CrossRef]
- Timmons, B.W.; Cieslak, T. Human natural killer cell subsets and acute exercise: A brief review. Exerc. Immunol. Rev. 2008, 14, 8–23. [Google Scholar]
- Campbell, J.P.; Turner, J.E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018, 9, 648. [Google Scholar] [CrossRef]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; van Djik, S.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA-methylation profiling. Genome Biol. 2016, 17, 208. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean | Standard Deviation |
---|---|---|
Age [years] | 61.4 | 8.0 |
Weight [kg] | 60.2 | 4.0 |
Height [cm] | 166.2 | 4.1 |
BMI [kg/m2] | 20.0 | 1.5 |
Waist circumference [cm] | 84.2 | 5.5 |
Maximal power output [Watt] | 165.0 | 13.7 |
VO2peak [mL/min/kg] | 32.4 | 3.8 |
Target ID | Chromosome | Location | Refgene Group | Refgene Name | Δβ-Value | DiffScore |
---|---|---|---|---|---|---|
cg03347334 | 18 | 55829444 | Body | NEDD4L | −0.16 | −60.15 |
cg05476733 | 11 | 128477400 | −0.13 | −53.12 | ||
cg23944405 | 11 | 30602030 | 1stExon | MPPED2 | −0.13 | −42.75 |
cg18139862 | 3 | 48344301 | TSS1500 | NME6 | −0.14 | −41.93 |
cg21899777 | 22 | 46771084 | Body | CELSR1 | −0.10 | −37.09 |
cg19360943 | 12 | 6762431 | Body | ING4 | −0.11 | −36.96 |
cg22942704 | 1 | 20813574 | TSS1500 | CAMK2N1 | −0.15 | −35.73 |
cg13565400 | 11 | 73882059 | 1stExon | C2CD3; PPME1 | −0.10 | −23.19 |
cg02295170 | 6 | 130718139 | 5′UTR | TMEM200A | −0.09 | −22.73 |
cg24226193 | 7 | 28191663 | Body | JAZF1 | −0.11 | −22.50 |
cg05119374 | 6 | 32399399 | −0.09 | −20.57 | ||
cg27114965 | 3 | 57614340 | Body | DENND6A | −0.10 | −19.06 |
cg00268500 | 2 | 64067540 | TSS1500 | UGP2 | −0.09 | −17.98 |
cg20481642 | 2 | 166060635 | TSS200 | SCN3A | −0.08 | −16.45 |
cg15729230 | 1 | 172628514 | 1stExon | FASLG | −0.10 | −15.97 |
cg03997458 | 10 | 125207543 | −0.08 | −15.61 | ||
cg01379853 | 19 | 6239836 | Body | MLLT1 | −0.10 | −13.46 |
cg21895314 | 21 | 44593708 | −0.10 | −13.28 | ||
cg20339715 | 8 | 27757965 | Body | SCARA5 | −0.11 | −13.20 |
cg00835758 | 14 | 35550189 | TSS200 | LOC101927178; FAM177A1 | 0.13 | 15.61 |
cg21646955 | 6 | 35108921 | Body | TCP11 | 0.08 | 16.18 |
cg25540806 | 4 | 90815778 | TSS1500 | MMRN1 | 0.11 | 16.61 |
cg22758714 | 4 | 190942739 | 0.12 | 17.75 | ||
cg07675898 | 11 | 41681482 | 0.08 | 19.76 | ||
cg06716138 | 8 | 124857543 | 0.12 | 20.77 | ||
cg11066566 | 3 | 17783373 | TSS1500 | TBC1D5 | 0.10 | 22.87 |
cg14678442 | 17 | 54672540 | 1stExon | NOG | 0.10 | 23.97 |
cg17395184 | 15 | 42750462 | TSS1500 | ZFP106 | 0.13 | 29.99 |
cg02771649 | 1 | 31474920 | Body | PUM1 | 0.13 | 31.01 |
cg20381404 | 5 | 34008215 | 5′UTR | AMACR | 0.09 | 37.09 |
cg03681640 | 2 | 6647183 | 0.18 | 51.10 | ||
cg02270786 | 1 | 45474858 | Body | HECTD3 | 0.11 | 61.64 |
cg06095510 | 17 | 56764569 | 5′UTR | TEX14 | 0.17 | 314.97 |
Category | Term | Genes |
---|---|---|
UP_SEQ_FEATURE | Mutagenesis site | FASLG, NEDD4L, PUM1, SCN3A, UGP2 |
UP_KEYWORDS | Ubl conjugation | FASLG, NEDD4L, SCN3A, ZNF106 |
GOTERM_CC_DIRECT | GO:0005886~plasma membrane | CELSR1, FASLG, NEDD4L, SCN3A |
UP_KEYWORDS | Metal-binding | ING4, JAZF1, MPPED2, NME6, UGP2, ZNF106 |
UP_KEYWORDS | Zinc-finger | ING4, JAZF1, ZNF106 |
UP_KEYWORDS | Zinc | ING4, JAZF1, ZNF106 |
UP_KEYWORDS | Nucleus | FASLG, ING4, JAZF1, MLLT1, ZNF106 |
UP_SEQ_FEATURE | Glycosylation site:N-linked (GlcNAc…) | CELSR1, FASLG, MMRN1, NOG, SCARA5, SCN3A, TMEM200A |
UP_KEYWORDS | Glycoprotein | CELSR1, FASLG, MMRN1, NOG, SCARA5, SCN3A, TMEM200A |
UP_SEQ_FEATURE | Disulfide bond | CELSR1, MMRN1, NOG, FASLG, SCARA5 |
UP_KEYWORDS | Cell membrane | CAMK2N1, CELSR1, FASLG, SCARA5, SCN3A |
GOTERM_CC_DIRECT | GO:0005887~integral component of plasma membrane | CELSR1, FASLG, SCARA5 |
UP_KEYWORDS | Disulfide bond | CELSR1, FASLG, MMRN1, NOG, SCARA5 |
GOTERM_CC_DIRECT | GO:0005576~extracellular region | FASLG, MMRN1, NOG |
UP_SEQ_FEATURE | Topological domain:Extracellular | CELSR1, FASLG, SCARA5, TMEM200A |
UP_KEYWORDS | Secreted | FASLG, MMRN1, NOG |
UP_SEQ_FEATURE | Transmembrane region | CELSR1, FASLG, SCARA5, SCN3A, TCP11, TMEM200A |
UP_SEQ_FEATURE | Signal peptide | AMACR, CELSR1, MMRN1, NOG |
UP_SEQ_FEATURE | Topological domain:Cytoplasmic | CELSR1, FASLG, SCARA5, TMEM200A |
UP_KEYWORDS | Transmembrane helix | CELSR1, FASLG, SCARA5, SCN3A, TCP11, TMEM200A |
UP_KEYWORDS | Membrane | CAMK2N1, CELSR1, FASLG, SCARA5, SCN3A, TBC1D5, TCP11, TMEM200A |
UP_KEYWORDS | Transmembrane | CELSR1, FASLG, SCARA5, SCN3A, TCP11, TMEM200A |
GOTERM_CC_DIRECT | GO:0005886~plasma membrane | CELSR1, FASLG, NEDD4L, SCN3A |
GOTERM_CC_DIRECT | GO:0016021~integral component of membrane | CELSR1, FASLG, SCN3A, TCP11, TMEM200A |
UP_KEYWORDS | Signal | CELSR1, MMRN1, NOG |
GOTERM_CC_DIRECT | GO:0005634~nucleus | FASLG, HECTD3, ING4, JAZF1, MLLT1, NEDD4L, UGP2 |
UP_KEYWORDS | Transcription regulation | FASLG, JAZF1, MLLT1 |
UP_KEYWORDS | Transcription | FASLG, JAZF1, MLLT1 |
UP_KEYWORDS | Nucleus | FASLG, ING4, JAZF1, MLLT1, ZNF106 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schenk, A.; Koliamitra, C.; Bauer, C.J.; Schier, R.; Schweiger, M.R.; Bloch, W.; Zimmer, P. Impact of Acute Aerobic Exercise on Genome-Wide DNA-Methylation in Natural Killer Cells—A Pilot Study. Genes 2019, 10, 380. https://doi.org/10.3390/genes10050380
Schenk A, Koliamitra C, Bauer CJ, Schier R, Schweiger MR, Bloch W, Zimmer P. Impact of Acute Aerobic Exercise on Genome-Wide DNA-Methylation in Natural Killer Cells—A Pilot Study. Genes. 2019; 10(5):380. https://doi.org/10.3390/genes10050380
Chicago/Turabian StyleSchenk, Alexander, Christine Koliamitra, Claus Jürgen Bauer, Robert Schier, Michal R. Schweiger, Wilhelm Bloch, and Philipp Zimmer. 2019. "Impact of Acute Aerobic Exercise on Genome-Wide DNA-Methylation in Natural Killer Cells—A Pilot Study" Genes 10, no. 5: 380. https://doi.org/10.3390/genes10050380
APA StyleSchenk, A., Koliamitra, C., Bauer, C. J., Schier, R., Schweiger, M. R., Bloch, W., & Zimmer, P. (2019). Impact of Acute Aerobic Exercise on Genome-Wide DNA-Methylation in Natural Killer Cells—A Pilot Study. Genes, 10(5), 380. https://doi.org/10.3390/genes10050380