Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis
Abstract
:1. Introduction
2. The Genetic Basis of Psoriasis
2.1. Genetic Factors
2.2. Differences between Men and Women
2.3. Genes Related to Immune Response
3. Implication of Keratinocytes
4. Transcriptome Profiling Analysis for a Better Understanding of the Pathogenesis
4.1. Overview of Transcriptomic Studies
4.2. Studying the Contribution of Keratinocytes in Psoriasis
4.3. Investigation of Treatments on the Gene Expression Profile
4.4. Non-Lesional Skin Provides Important Insights about the Pathomechanism of Psoriasis
4.5. Comparison of the Most Deregulated Genes between Studies
4.6. Lipid Disturbance in Psoriasis
4.7. Associations between Transcriptomic Profiles in Different Conditions
4.8. Factors to Consider When Comparing Transcriptomic Studies
5. Transcriptomic Studies Using In Vitro Models
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873. [Google Scholar] [CrossRef]
- Johnson-Huang, L.M.; Lowes, M.A.; Krueger, J.G. Putting together the psoriasis puzzle: An update on developing targeted therapies. Dis. Models Mech. 2012, 5, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontochristopoulos, G.; Kouris, A.; Chantzaras, A.; Petridis, A.; Yfantopoulos, J. Improvement of health-related quality of life and adherence to treatment with calcipotriol-betamethasone dipropionate gel in patients with psoriasis vulgaris. An. Bras. De Dermatol. 2016, 91, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, J.; Bowcock, A. Psoriasis pathophysiology: Current concepts of pathogenesis. Ann. Rheum. Dis. 2005, 64, ii30–ii36. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J. The distribution patterns of psoriasis: Observations on the Koebner response. Can. Med. Assoc. J. 1962, 87, 1271. [Google Scholar] [PubMed]
- Griffiths, C.E.; Barker, J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007, 370, 263–271. [Google Scholar] [CrossRef]
- Grozdev, I.; Korman, N.; Tsankov, N. Psoriasis as a systemic disease. Clin. Dermatol. 2014, 32, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.A.; Gupta, A.K. Psychiatric and psychological co-morbidity in patients with dermatologic disorders. Am. J. Clin. Dermatol. 2003, 4, 833–842. [Google Scholar] [CrossRef]
- Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of psoriasis and development of treatment. J. Dermatol. 2018, 45, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Nickoloff, B.J.; Qin, J.-Z.; Nestle, F.O. Immunopathogenesis of psoriasis. Clin. Rev. Allergy Immunol. 2007, 33, 45–56. [Google Scholar] [CrossRef]
- Michalek, I.M.; Loring, B.; John, S.M. Global Report on Psoriasis; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Rachakonda, T.D.; Schupp, C.W.; Armstrong, A.W. Psoriasis prevalence among adults in the United States. J. Am. Acad. Dermatol. 2014, 70, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Lønnberg, A.S.; Skov, L.; Skytthe, A.; Kyvik, K.O.; Pedersen, O.B.; Thomsen, S.F. Heritability of psoriasis in a large twin sample. Br. J. Dermatol. 2013, 169, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Farber, E.M.; Nall, M.L.; Watson, W. Natural history of psoriasis in 61 twin pairs. Arch. Dermatol. 1974, 109, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Wuepper, K.D.; Coulter, S.N.; Haberman, A. Psoriasis vulgaris: A genetic approach. J. Investig. Dermatol. 1990, 95, 2s–4s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, D.L.; Spelman, L.S.; Martin, N.G. Psoriasis in Australian twins. J. Am. Acad. Derm. 1993, 29, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Debbaneh, M.G.; Liao, W. Genetic Epidemiology of Psoriasis. Curr. Dermatol. Rep. 2014, 3, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Abele, D.C.; Dobson, R.L.; Graham, J.B. Heredity and psoriasis: Study of a large family. Arch. Dermatol. 1963, 88, 38–47. [Google Scholar] [CrossRef]
- Henseler, T.; Christophers, E. Psoriasis of early and late onset: Characterization of two types of psoriasis vulgaris. J. Am. Acad. Derm. 1985, 13, 450–456. [Google Scholar] [CrossRef]
- Smith, R.L.; Warren, R.B.; Griffiths, C.E.; Worthington, J. Genetic susceptibility to psoriasis: An emerging picture. Genome Med. 2009, 1, 72. [Google Scholar] [CrossRef] [Green Version]
- Strange, A.; Capon, F.; Spencer, C.C.; Knight, J.; Weale, M.E.; Allen, M.H.; Barton, A.; Band, G.; Bellenguez, C.; Bergboer, J.G.; et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 2010, 42, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.P.; Duffin, K.C.; Helms, C.; Ding, J.; Stuart, P.E.; Goldgar, D.; Gudjonsson, J.E.; Li, Y.; Tejasvi, T.; Feng, B.J.; et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 2009, 41, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoi, L.C.; Spain, S.L.; Ellinghaus, E.; Stuart, P.E.; Capon, F.; Knight, J.; Tejasvi, T.; Kang, H.M.; Allen, M.H.; Lambert, S.; et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat. Commun. 2015, 6, 7001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoi, L.C.; Spain, S.L.; Knight, J.; Ellinghaus, E.; Stuart, P.E.; Capon, F.; Ding, J.; Li, Y.; Tejasvi, T.; Gudjonsson, J.E.; et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 2012, 44, 1341–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebwohl, M. Psoriasis. Lancet (Lond. Engl.) 2003, 361, 1197–1204. [Google Scholar] [CrossRef]
- Gudjonsson, J.E.; Karason, A.; Antonsdottir, A.A.; Runarsdottir, E.H.; Gulcher, J.R.; Stefansson, K.; Valdimarsson, H. HLA-Cw6-positive and HLA-Cw6-negative patients with Psoriasis vulgaris have distinct clinical features. J. Investig. Dermatol. 2002, 118, 362–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiro, R.; Tejón, P.; Coto, P.; Alonso, S.; Alperi, M.; Sarasqueta, C.; González, S.; Martínez-Borra, J.; López-Larrea, C.; Ballina, J. Clinical differences between men and women with psoriatic arthritis: Relevance of the analysis of genes and polymorphisms in the major histocompatibility complex region and of the age at onset of psoriasis. Clin. Dev. Immunol. 2013, 2013, 482691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüffmeier, U.; Reis, A.; Steffens, M.; Lascorz, J.; Böhm, B.; Lohmann, J.; Wendler, J.; Traupe, H.; Küster, W.; Wienker, T.F.; et al. Male restricted genetic association of variant R620W in PTPN22 with psoriatic arthritis. J. Investig. Dermatol. 2006, 126, 932–935. [Google Scholar] [CrossRef] [Green Version]
- Hagg, D.; Eriksson, M.; Sundstrom, A.; Schmitt-Egenolf, M. The higher proportion of men with psoriasis treated with biologics may be explained by more severe disease in men. PLoS ONE 2013, 8, e63619. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewski, A.; Matusiak, Ł.; Szczerkowska-Dobosz, A.; Nowak, I.; Kuśnierczyk, P. HLA-C*06:02-independent, gender-related association of PSORS1C3 and PSORS1C1/CDSN single-nucleotide polymorphisms with risk and severity of psoriasis. Mol. Genet. Genom. Mgg. 2018, 293, 957–966. [Google Scholar] [CrossRef] [Green Version]
- Hägg, D.; Sundström, A.; Eriksson, M.; Schmitt-Egenolf, M. Severity of Psoriasis Differs Between Men and Women: A Study of the Clinical Outcome Measure Psoriasis Area and Severity Index (PASI) in 5438 Swedish Register Patients. Am. J. Clin. Derm. 2017, 18, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Sakai, R.; Matsui, S.; Fukushima, M.; Yasuda, H.; Miyauchi, H.; Miyachi, Y. Prognostic factor analysis for plaque psoriasis. Dermatology 2005, 211, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Cemil, B.C.; Cengiz, F.P.; Atas, H.; Ozturk, G.; Canpolat, F. Sex hormones in male psoriasis patients and their correlation with the Psoriasis Area and Severity Index. J. Dermatol. 2015, 42, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Eltaweel, A.; Mustafa, A.I.; El-Shimi, O.S.; Algaod, F.A. Sex hormones, erectile dysfunction, and psoriasis; a bad friendship! Int. J. Dermatol. 2018, 57, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Allam, J.P.; Bunzek, C.; Schnell, L.; Heltzel, M.; Weckbecker, L.; Wilsmann-Theis, D.; Brendes, K.; Haidl, G.; Novak, N. Low serum testosterone levels in male psoriasis patients correlate with disease severity. Eur. J. Dermatol. Ejd 2019, 29, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Banaszczyk, K. Tildrakizumab in the treatment of psoriasis-literature review. Reumatologia 2019, 57, 234–238. [Google Scholar] [CrossRef]
- Blauvelt, A. Safety of secukinumab in the treatment of psoriasis. Expert Opin. Drug Saf. 2016, 15, 1413–1420. [Google Scholar] [CrossRef]
- Cargill, M.; Schrodi, S.J.; Chang, M.; Garcia, V.E.; Brandon, R.; Callis, K.P.; Matsunami, N.; Ardlie, K.G.; Civello, D.; Catanese, J.J.; et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 2007, 80, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Di Meglio, P.; Di Cesare, A.; Laggner, U.; Chu, C.C.; Napolitano, L.; Villanova, F.; Tosi, I.; Capon, F.; Trembath, R.C.; Peris, K.; et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE 2011, 6, e17160. [Google Scholar] [CrossRef] [Green Version]
- Mössner, R.; Kingo, K.; Kleensang, A.; Krüger, U.; König, I.R.; Silm, H.; Westphal, G.A.; Reich, K. Association of TNF -238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris. J. Investig. Dermatol. 2005, 124, 282–284. [Google Scholar] [CrossRef] [Green Version]
- Reich, K.; Westphal, G.; Schulz, T.; Müller, M.; Zipprich, S.; Fuchs, T.; Hallier, E.; Neumann, C. Combined analysis of polymorphisms of the tumor necrosis factor-alpha and interleukin-10 promoter regions and polymorphic xenobiotic metabolizing enzymes in psoriasis. J. Investig. Dermatol. 1999, 113, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Krueger, J.G.; Bowcock, A.M. Psoriasis: Genetic associations and immune system changes. Genes Immun. 2007, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.C.; Tan, X.-Y.; Luxenberg, D.P.; Karim, R.; Dunussi-Joannopoulos, K.; Collins, M.; Fouser, L.A. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 2006, 203, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Li, D.; Li, C.; Muehleisen, B.; Radek, K.A.; Park, H.J.; Jiang, Z.; Li, Z.; Lei, H.; Quan, Y. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 2012, 37, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, X.; Lai, Y. Keratinocyte: A trigger or an executor of psoriasis? J. Leukoc. Biol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.T.; Cao, L.; Roberson, E.D.; Pierson, K.C.; Yang, C.F.; Joyce, C.E.; Ryan, C.; Duan, S.; Helms, C.A.; Liu, Y.; et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 2012, 90, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, K. Genetics: Deep exploration. Nature 2012, 492, S56–S57. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Zheng, G.; Huang, J.; Songyang, Z.; Zhao, X.; Lin, X. Gain-of-Function Mutation of Card14 Leads to Spontaneous Psoriasis-like Skin Inflammation through Enhanced Keratinocyte Response to IL-17A. Immunity 2018, 49, 66–79.e65. [Google Scholar] [CrossRef] [Green Version]
- Mellett, M.; Meier, B.; Mohanan, D.; Schairer, R.; Cheng, P.; Satoh, T.K.; Kiefer, B.; Ospelt, C.; Nobbe, S.; Thome, M.; et al. CARD14 Gain-of-Function Mutation Alone Is Sufficient to Drive IL-23/IL-17-Mediated Psoriasiform Skin Inflammation In Vivo. J. Investig. Dermatol. 2018, 138, 2010–2023. [Google Scholar] [CrossRef] [Green Version]
- Lande, R.; Gregorio, J.; Facchinetti, V.; Chatterjee, B.; Wang, Y.-H.; Homey, B.; Cao, W.; Wang, Y.-H.; Su, B.; Nestle, F.O.; et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007, 449, 564–569. [Google Scholar] [CrossRef]
- Lai, Y.; Di Nardo, A.; Nakatsuji, T.; Leichtle, A.; Yang, Y.; Cogen, A.L.; Wu, Z.-R.; Hooper, L.V.; Schmidt, R.R.; Von Aulock, S. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 2009, 15, 1377. [Google Scholar] [CrossRef] [PubMed]
- Qiao, P.; Guo, W.; Ke, Y.; Fang, H.; Zhuang, Y.; Jiang, M.; Zhang, J.; Shen, S.; Qiao, H.; Dang, E. Mechanical stretch exacerbates psoriasis by stimulating keratinocyte proliferation and cytokine production. J. Investig. Dermatol. 2019, 139, 1470–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasparakis, M.; Courtois, G.; Hafner, M.; Schmidt-Supprian, M.; Nenci, A.; Toksoy, A.; Krampert, M.; Goebeler, M.; Gillitzer, R.; Israel, A. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 2002, 417, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Bonnet, M.C.; Ulvmar, M.H.; Wolk, K.; Karagianni, N.; Witte, E.; Uthoff-Hachenberg, C.; Renauld, J.-C.; Kollias, G.; Toftgard, R. Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 2013, 39, 899–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenz, R.; Eferl, R.; Kenner, L.; Florin, L.; Hummerich, L.; Mehic, D.; Scheuch, H.; Angel, P.; Tschachler, E.; Wagner, E.F. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 2005, 437, 369–375. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suarez-Farinas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef] [Green Version]
- Garzorz-Stark, N.; Eyerich, K. Psoriasis Pathogenesis: Keratinocytes Are Back in the Spotlight. J. Investig. Dermatol. 2019, 139, 995–996. [Google Scholar] [CrossRef] [Green Version]
- Oestreicher, J.; Walters, I.B.; Kikuchi, T.; Gilleaudeau, P.; Surette, J.; Schwertschlag, U.; Dorner, A.J.; Krueger, J.G.; Trepicchio, W.L. Molecular classification of psoriasis disease-associated genes through pharmacogenomic expression profiling. Pharm. J. 2001, 1, 272–287. [Google Scholar] [CrossRef]
- Bowcock, A.M.; Shannon, W.; Du, F.; Duncan, J.; Cao, K.; Aftergut, K.; Catier, J.; Fernandez-Vina, M.A.; Menter, A. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum. Mol. Genet. 2001, 10, 1793–1805. [Google Scholar] [CrossRef] [Green Version]
- Nomura, I.; Gao, B.; Boguniewicz, M.; Darst, M.A.; Travers, J.B.; Leung, D.Y. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: A gene microarray analysis. J. Allergy Clin. Immunol. 2003, 112, 1195–1202. [Google Scholar] [CrossRef]
- Zhou, X.; Krueger, J.G.; Kao, M.C.; Lee, E.; Du, F.; Menter, A.; Wong, W.H.; Bowcock, A.M. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol. Genom. 2003, 13, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulski, J.K.; Kenworthy, W.; Bellgard, M.; Taplin, R.; Okamoto, K.; Oka, A.; Mabuchi, T.; Ozawa, A.; Tamiya, G.; Inoko, H. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals. J. Mol. Med. (Berl. Ger.) 2005, 83, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.B.; Johnson, C.M.; Morar, N.; Burslem, F.; Groves, R.W. The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: Dominance of innate immune responses in psoriasis. Am. J. Pathol. 2007, 171, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Reischl, J.; Schwenke, S.; Beekman, J.M.; Mrowietz, U.; Stürzebecher, S.; Heubach, J.F. Increased expression of Wnt5a in psoriatic plaques. J. Investig. Dermatol. 2007, 127, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Richman, L.; Morehouse, C.; de los Reyes, M.; Higgs, B.W.; Boutrin, A.; White, B.; Coyle, A.; Krueger, J.; Kiener, P.A.; et al. Type I interferon: Potential therapeutic target for psoriasis? PLoS ONE 2008, 3, e2737. [Google Scholar] [CrossRef] [PubMed]
- Gudjonsson, J.E.; Ding, J.; Li, X.; Nair, R.P.; Tejasvi, T.; Qin, Z.S.; Ghosh, D.; Aphale, A.; Gumucio, D.L.; Voorhees, J.J.; et al. Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. J. Investig. Dermatol. 2009, 129, 2795–2804. [Google Scholar] [CrossRef] [Green Version]
- Gudjonsson, J.E.; Ding, J.; Johnston, A.; Tejasvi, T.; Guzman, A.M.; Nair, R.P.; Voorhees, J.J.; Abecasis, G.R.; Elder, J.T. Assessment of the psoriatic transcriptome in a large sample: Additional regulated genes and comparisons with in vitro models. J. Investig. Dermatol. 2010, 130, 1829–1840. [Google Scholar] [CrossRef] [Green Version]
- Joyce, C.E.; Zhou, X.; Xia, J.; Ryan, C.; Thrash, B.; Menter, A.; Zhang, W.; Bowcock, A.M. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet. 2011, 20, 4025–4040. [Google Scholar] [CrossRef]
- Suárez-Fariñas, M.; Li, K.; Fuentes-Duculan, J.; Hayden, K.; Brodmerkel, C.; Krueger, J.G. Expanding the psoriasis disease profile: Interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J. Investig. Dermatol. 2012, 132, 2552–2564. [Google Scholar] [CrossRef] [Green Version]
- Jabbari, A.; Suárez-Fariñas, M.; Dewell, S.; Krueger, J.G. Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes. J. Investig. Dermatol. 2012, 132, 246–249. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Tsoi, L.C.; Swindell, W.R.; Gudjonsson, J.E.; Tejasvi, T.; Johnston, A.; Ding, J.; Stuart, P.E.; Xing, X.; Kochkodan, J.J.; et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J. Investig. Dermatol. 2014, 134, 1828–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, R.; Gupta, R.; Lai, K.; Chopra, N.; Arron, S.T.; Liao, W. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genom. 2016, 17, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swindell, W.R.; Sarkar, M.K.; Liang, Y.; Xing, X.; Gudjonsson, J.E. Cross-Disease Transcriptomics: Unique IL-17A Signaling in Psoriasis Lesions and an Autoimmune PBMC Signature. J. Investig. Dermatol. 2016, 136, 1820–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swindell, W.R.; Sarkar, M.K.; Liang, Y.; Xing, X.; Baliwag, J.; Elder, J.T.; Johnston, A.; Ward, N.L.; Gudjonsson, J.E. RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Sci. Rep. 2017, 7, 18045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, R.; Yan, D.; Chang, H.-W.; Lee, K.; Bhattarai, S.; Huang, Z.-M.; Nakamura, M.; Singh, R.; Afifi, L.; Taravati, K.; et al. RNA-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways. Sci. Rep. 2018, 8, 11368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.B.; Sedgewick, A.J.; Finnegan, A.I.; Harirchian, P.; Lee, J.; Kwon, S.; Fassett, M.S.; Golovato, J.; Gray, M.; Ghadially, R.; et al. Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution. Cell Rep. 2018, 25, 871–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nattkemper, L.A.; Tey, H.L.; Valdes-Rodriguez, R.; Lee, H.; Mollanazar, N.K.; Albornoz, C.; Sanders, K.M.; Yosipovitch, G. The Genetics of Chronic Itch: Gene Expression in the Skin of Patients with Atopic Dermatitis and Psoriasis with Severe Itch. J. Investig. Dermatol. 2018, 138, 1311–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, M.; Ding, J.; Yan, J.; Li, R.; Jiao, J.; Sun, Q. Circular RNA Expression Profile and Analysis of Their Potential Function in Psoriasis. Cell Physiol. Biochem. 2018, 50, 15–27. [Google Scholar] [CrossRef]
- Devos, M.; Mogilenko, D.A.; Fleury, S.; Gilbert, B.; Becquart, C.; Quemener, S.; Dehondt, H.; Tougaard, P.; Staels, B.; Bachert, C.; et al. Keratinocyte Expression of A20/TNFAIP3 Controls Skin Inflammation Associated with Atopic Dermatitis and Psoriasis. J. Investig. Dermatol. 2019, 139, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, L.; Srivastava, A.; Meisgen, F.; Das Mahapatra, K.; Xia, P.; Xu Landen, N.; Pivarcsi, A.; Sonkoly, E. The Keratinocyte Transcriptome in Psoriasis: Pathways Related to Immune Responses, Cell Cycle and Keratinization. Acta Derm. Venereol. 2019, 99, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Dal Molin, A.; Di Camillo, B. How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives. Brief. Bioinform. 2019, 20, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Mok, K.W.; Saxena, N.; Rendl, M. More Than the Sum of Its Parts: Single-Cell Transcriptomics Reveals Epidermal Cell States. Cell Rep. 2018, 25, 823–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepicchio, W.L.; Ozawa, M.; Walters, I.B.; Kikuchi, T.; Gilleaudeau, P.; Bliss, J.L.; Schwertschlag, U.; Dorner, A.J.; Krueger, J.G. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J. Clin. Investig. 1999, 104, 1527–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepicchio, W.L.; Bozza, M.; Pedneault, G.; Dorner, A.J. Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J. Immunol. (Baltimor Md. 1950) 1996, 157, 3627–3634. [Google Scholar]
- Numerof, R.P.; Asadullah, K. Cytokine and anti-cytokine therapies for psoriasis and atopic dermatitis. Biodrugs Clin. Immunother. Biopharm. Gene Ther. 2006, 20, 93–103. [Google Scholar] [CrossRef]
- Matsuda, S.; Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology 2000, 47, 119–125. [Google Scholar] [CrossRef]
- Trepicchio, W.L.; Wang, L.; Bozza, M.; Dorner, A.J. IL-11 regulates macrophage effector function through the inhibition of nuclear factor-kappaB. J. Immunol. (Baltimore Md. 1950) 1997, 159, 5661–5670. [Google Scholar]
- Romanowska, M.; al Yacoub, N.; Seidel, H.; Donandt, S.; Gerken, H.; Phillip, S.; Haritonova, N.; Artuc, M.; Schweiger, S.; Sterry, W.; et al. PPARdelta enhances keratinocyte proliferation in psoriasis and induces heparin-binding EGF-like growth factor. J. Investig. Dermatol. 2008, 128, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, A.; Westerberg, R.; Jacobsson, A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006, 45, 237–249. [Google Scholar] [CrossRef]
- Yin, X.; Low, H.Q.; Wang, L.; Li, Y.; Ellinghaus, E.; Han, J.; Estivill, X.; Sun, L.; Zuo, X.; Shen, C.; et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat. Commun. 2015, 6, 6916. [Google Scholar] [CrossRef] [Green Version]
- Hirata, J.; Hirota, T.; Ozeki, T.; Kanai, M.; Sudo, T.; Tanaka, T.; Hizawa, N.; Nakagawa, H.; Sato, S.; Mushiroda, T.; et al. Variants at HLA-A, HLA-C, and HLA-DQB1 Confer Risk of Psoriasis Vulgaris in Japanese. J. Investig. Dermatol. 2018, 138, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandran, V.; Raychaudhuri, S.P. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun. 2010, 34, J314–J321. [Google Scholar] [CrossRef] [PubMed]
- Simard, M.; Julien, P.; Fradette, J.; Pouliot, R. Modulation of the Lipid Profile of Reconstructed Skin Substitutes after Essential Fatty Acid Supplementation Affects Testosterone Permeability. Cells 2019, 8, 1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzak, A.; Michalak-Stoma, A.; Chodorowska, G.; Szepietowski, J.C. Lipid disturbances in psoriasis: An update. Mediat. Inflamm. 2010, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Yi, X.; Ding, Y. Combined Transcriptomic Analysis Revealed AKR1B10 Played an Important Role in Psoriasis through the Dysregulated Lipid Pathway and Overproliferation of Keratinocyte. Biomed. Res. Int. 2017, 2017, 8717369. [Google Scholar] [CrossRef] [PubMed]
- Grimminger, F.; Mayser, P. Lipid mediators, free fatty acids and psoriasis. Prostaglandins Leukot. Essent. Fat. Acids 1995, 52, 1–15. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Domenichiello, A.F.; Dey, A.K.; Yuan, Z.X.; Goyal, A.; Rose, S.M.; Playford, M.P.; Ramsden, C.E.; Mehta, N.N. Bioactive Lipid Mediator Profiles in Human Psoriasis Skin and Blood. J. Investig. Dermatol. 2018, 138, 1518–1528. [Google Scholar] [CrossRef] [Green Version]
- Ikai, K. Psoriasis and the arachidonic acid cascade. J. Dermatol. Sci. 1999, 21, 135–146. [Google Scholar] [CrossRef]
- Nicolaou, A. Eicosanoids in skin inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 131–138. [Google Scholar] [CrossRef]
- Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Nakamura, M.T.; Nara, T.Y. Gene regulation of mammalian desaturases. Biochem. Soc. Trans. 2002, 30, 1076–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53, 124–144. [Google Scholar] [CrossRef]
- Lin, M.H.; Khnykin, D. Fatty acid transporters in skin development, function and disease. Biochim. Biophys. Acta 2014, 1841, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feingold, K.R. Thematic review series: Skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid. Res. 2007, 48, 2531–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejedor, J.R.; Fraga, M.F. Interindividual epigenetic variability: Sound or noise? Bioessays News Rev. Mol. Cell. Dev. Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed]
- Casamassimi, A.; Federico, A.; Rienzo, M.; Esposito, S.; Ciccodicola, A. Transcriptome Profiling in Human Diseases: New Advances and Perspectives. Int. J. Mol. Sci. 2017, 18, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Reid, L.H.; Jones, W.D.; Shippy, R.; Warrington, J.A.; Baker, S.C.; Collins, P.J.; de Longueville, F.; Kawasaki, E.S.; Lee, K.Y.; et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 2006, 24, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Price, E.M.; Robinson, W.P. Adjusting for Batch Effects in DNA Methylation Microarray Data, a Lesson Learned. Front. Genet. 2018, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Povysil, G.; Petrovski, S.; Hostyk, J.; Aggarwal, V.; Allen, A.S.; Goldstein, D.B. Rare-variant collapsing analyses for complex traits: Guidelines and applications. Nat. Rev. Genet. 2019, 20, 747–759. [Google Scholar] [CrossRef]
- Hayer, K.E.; Pizarro, A.; Lahens, N.F.; Hogenesch, J.B.; Grant, G.R. Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data. Bioinform. (Oxf. Engl.) 2015, 31, 3938–3945. [Google Scholar] [CrossRef]
- Rao, M.S.; Van Vleet, T.R.; Ciurlionis, R.; Buck, W.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Liguori, M.J. Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver from Short-Term Rat Toxicity Studies. Front. Genet. 2018, 9, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Ning, B.; Shi, T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front. Genet. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.S.; Lowes, M.A.; Suàrez-Fariñas, M.; Zaba, L.C.; Cardinale, I.; Blumenberg, M.; Krueger, J.G. Cellular Genomic Maps Help Dissect Pathology in Human Skin Disease. J. Investig. Dermatol. 2008, 128, 606–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muromoto, R.; Hirao, T.; Tawa, K.; Hirashima, K.; Kon, S.; Kitai, Y.; Matsuda, T. IL-17A plays a central role in the expression of psoriasis signature genes through the induction of IκB-ζ in keratinocytes. Int. Immunol. 2016, 28, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilloteau, K.; Paris, I.; Pedretti, N.; Boniface, K.; Juchaux, F.; Huguier, V.; Guillet, G.; Bernard, F.X.; Lecron, J.C.; Morel, F. Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1{alpha}, and TNF-{alpha} Recapitulates Some Features of Psoriasis. J. Immunol. (Baltimore Md. 1950) 2010, 184, 5263–5270. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wu, N.; Duan, Q.; Yang, H.; Wang, X.; Yang, P.; Zhang, M.; Liu, J.; Liu, Z.; Shao, Y.; et al. C10orf99 contributes to the development of psoriasis by promoting the proliferation of keratinocytes. Sci. Rep. 2018, 8, 8590. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zheng, H.; Zhou, H.; Huang, N.; Wei, X.; Liu, X.; Teng, X.; Hu, Z.; Zhang, J.; Zhou, X.; et al. Systematic screening and identification of novel psoriasis-specific genes from the transcriptome of psoriasis-like keratinocytes. Mol. Med. Rep. 2019, 19, 1529–1542. [Google Scholar] [CrossRef] [Green Version]
- Pupovac, A.; Senturk, B.; Griffoni, C.; Maniura-Weber, K.; Rottmar, M.; McArthur, S.L. Toward Immunocompetent 3D Skin Models. Adv. Healthc. Mater. 2018, 7, e1701405. [Google Scholar] [CrossRef]
- Niehues, H.; van den Bogaard, E.H. Past, present and future of in vitro 3D reconstructed inflammatory skin models to study psoriasis. Exp. Dermatol. 2018, 27, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Barker, C.L.; McHale, M.T.; Gillies, A.K.; Waller, J.; Pearce, D.M.; Osborne, J.; Hutchinson, P.E.; Smith, G.M.; Pringle, J.H. The development and characterization of an in vitro model of psoriasis. J. Investig. Dermatol. 2004, 123, 892–901. [Google Scholar] [CrossRef] [Green Version]
- Jean, J.; Garcia-Peérez, M.E.; Pouliot, R. Bioengineered Skin: The Self-Assembly Approach. J. Tissue Sci. Eng. 2011, 03. [Google Scholar] [CrossRef]
- Jean, J.; Lapointe, M.; Soucy, J.; Pouliot, R. Development of an in vitro psoriatic skin model by tissue engineering. J. Dermatol. Sci. 2009, 53, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Rioux, G.; Pouliot-Berube, C.; Simard, M.; Benhassine, M.; Soucy, J.; Guerin, S.L.; Pouliot, R. The Tissue-Engineered Human Psoriatic Skin Substitute: A Valuable In Vitro Model to Identify Genes with Altered Expression in Lesional Psoriasis. Int. J. Mol. Sci. 2018, 19, 2923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouliot-Bérubé, C.; Zaniolo, K.; Guérin, S.L.; Pouliot, R. Tissue-engineered human psoriatic skin supplemented with cytokines as an in vitro model to study plaque psoriasis. Regen. Med. 2016, 11, 545–557. [Google Scholar] [CrossRef] [PubMed]
Year | References | Samples | Key Message | Methodology and Validation |
---|---|---|---|---|
2001 | Oestreicher et al. [59] | 24 psoriatic skin biopsies (lesional and non-lesional) | This first genome-wide analysis following a pharmacological intervention has shown that treatment can influence the effect on gene expression. Recombinant human IL-11 treatment resulted in increased expression of genes such as GATA3, CRIP1 and TNXA, while cyclosporin A significantly decreased the levels of MMP12, CCNF and HBP17. | Microarray (HuGeneFL, Affymetrix Inc, Santa Clara, CA, USA) |
2001 | Bowcock et al. [60] | 15 psoriatic skin biopsies (lesional and non-lesional) | Hierarchical clustering analyses showed a strong difference in gene expression between lesional and non-lesional samples, particularly genes expressed by inflammatory cells. These variances are independent of the HLA-Cw*0602 status of the patients. | Microarray (HG-U95A, Affymetrix Inc, Santa Clara, CA, USA) |
2003 | Nomura et al. [61] | Skin biopsies from 7 patients with psoriasis and 6 patients with atopic dermatitis (AD) | Study showing for the first time the distinctive pattern of gene expression that characterizes AD versus psoriatic skin lesion. The 18 genes whose expression is increased in AD skin, including the CC chemokines CCL13, CCL18, and CCL27, as well as the 62 genes whose expression is significantly increased in psoriatic skin compared to AD skin, including CCL4, CCL20, CXCL2, CXCL8, and CXCR2, providing a potential signature for the identification of these skin diseases. | Microarray (HG-U95Av2, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2003 | Zhou et al. [62] | Psoriatic skin biopsies (lesional and non-lesional) | Identification of two new genes in the IL-1 family genes products that are deregulated in psoriatic lesions, namely IL1HY1 and IL1H1. Ontology analyses have also revealed that epidermal differentiation is the only constantly altered process between lesional/non-lesional skin and normal skin. | Microarray (HG-U95A-E, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2005 | Kulski et al. [63] | 4 psoriatic skin biopsies (lesional and non-lesional) | Gene expression profiling of Japanese psoriatic skin identified up-regulated genes involved in atypical epidermal cellular organization and differentiation, such as TGM1, IVL, FABP5, CSTA and SPRR. JUNB stands out as the most deregulated gene between lesional and non-lesional samples. | Microarray (HG-U95Av2, Affymetrix Inc, Santa Clara, CA, USA) |
2007 | Mee et al. [64] | 6 psoriatic skin biopsies and healthy keratinocytes culture treated with cytokines | A significant correlation between upregulated transcripts in psoriatic skin lesions and the ones from IL-1-induced keratinocytes in vitro suggests a dominant innate immune response in the inflammatory environment of psoriatic lesions rather than an adaptive immune response. | Microarray (HuGeneFL and HG-U133A, Affymetrix Inc, Santa Clara, CA, USA) |
2007 | Reischl et al. [65] | 20 psoriatic skin biopsies (lesional and non-lesional) | Increased expression of WTN5A in psoriatic lesions. The involvement of Wtn5a in the pathogenesis of psoriasis remains to be elucidated but increased signaling via Wtn5a could lead to the activation of phospholipase C, and subsequently to the stimulation of the protein kinase C and calcineurin pathways. | Microarray (HG-U133A, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2008 | Yao et al. [66] | 26 psoriatic skin biopsies (lesional and non-lesional) | Type I IFNs as well as IFNAR1 and IFNAR2 are overexpressed in psoriatic lesional skin. The presence of a signature corresponding to induction by type I IFNs in lesional psoriatic skin suggests active signaling in these lesions. | Microarray (HG-U133 Plus 2.0, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2009 | Gudjonsson et al. [67] | 58 psoriatic skin biopsies (lesional and non-lesional) | Non-lesional skin could exist in a “pre-psoriatic” state. The decrease in the activity of three transcription factors, namely PPARA, ESR2 and SREBF1, could be linked to the altered expression of genes involved in lipid metabolism. | Microarray (HG-U133 Plus 2.0, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2010 | Gudjonsson et al. [68] | 58 psoriatic skin biopsies (lesional and non-lesional) | A large-scale study identifying more than 600 previously unreported transcripts. The comparison of this study with the cytokine-stimulated keratinocytes transcriptomes showed moderate overlap with the psoriatic transcriptome, without however representing more than 5.6% of the complete psoriatic transcriptome. | Microarray (HG-U133 Plus 2.0, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2011 | Joyce et al. [69] | Psoriatic skin biopsies (lesional and non-lesional) | Identification of a variety of new microRNAs by RNA-sequencing (RNA-seq). Of interest are an uncharacterized keratinocyte-derived miRNA, miR-135b, as well as an epidermal infiltration of the specific hematopoietic miRNA, miR-142-3p, in psoriatic lesions. The functions of these newly identified miRNAs are consistent with the inflammatory and hyperproliferative features of psoriasis. | Illumina (GAIIx, Illumina, San Diego, CA, USA) and qRT-PCR |
2012 | Suarez-Farinas et al. [70] | 85 psoriatic skin biopsies (lesional and non-lesional) | A study providing a complex molecular definition of moderate-to-severe psoriasis. Ingenuity pathway analysis identified activated transcription factors, such as NROB2, whose function is the downregulation of target genes. This could also explain the PPARa and RAR activation. | Microarray (HG-U133 Plus 2.0, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
2012 | Jabbari et al. [71] | Psoriatic skin biopsies (lesional and non-lesional) | The comparison of DEGs obtained from this study carried out by RNA-seq with those which used microarray technologies revealed a substantial number of previously unrecognized DEGs in psoriatic skin. The data obtained supported the importance of the synergy of the combined action of IL-17 and TNF-α in the pathogenesis of psoriasis. | RNA-seq (GAIIx, Illumina, San Diego, CA, USA) |
2014 | Li et al. [72] | 92 psoriatic skin biopsies | RNA-seq has put forward the involvement of transcripts with low expression levels which could not be identified by microarray studies by revealing gene coexpression networks illuminating processes involving keratinocytes, myeloid cells and T cells. | RNA-seq (GAII, Illumina, San Diego, CA, USA) and microarray (HG-U133 Plus 2.0, Affymetrix Inc, Santa Clara, CA, USA) |
2016 | Ahn et al. [73] | 18 psoriatic skin biopsies (pre- and post-treatment with adalimumab) | Treatment with a TNF-α inhibitor, such as adalimumab, promotes normalization of disturbed pathways of psoriasis. The top enriched pathways after biological treatment are the regulation of leukocyte mediated cytotoxicity, regulation of cell killing and leukocyte activation. This study also highlights several roles for long non-coding RNAs. | RNA-seq (HiSeq 2000, Illumina, San Diego, CA, USA) |
2016 | Swindell et al. [74] | Psoriatic skin biopsies (performed using reads from prior studies) | The psoriasis specificity index developed revealed that psoriasis specific DEGs are mainly expressed by keratinocytes. Moreover, the activation of the IL-17A pathway appears to be a unique characteristic of psoriasis lesions and an inducer of DEGs. | RNA-seq meta-analysis (GSE41745, GSE54456/GSE63979 and GSE66511) |
2017 | Swindell et al. [75] | Psoriatic keratinocyte monolayer culture compared to 4 skin biopsies from the same patients (lesional and non-lesional) | Identification of a decrease in the expression of early and late differentiation markers (KRT1, KRT10, FLG, LOR) as well as of differentiation mediators (CAP14, ACER1) in psoriatic monolayer keratinocytes compared to full-thickness psoriatic biopsies, proposing differentiation as a key dysregulated process. A few genes under-expressed in the psoriatic keratinocytes monolayer have been associated with AP-1 binding sites located in the region of the epidermal differentiation complex, suggesting an intrinsic alteration in psoriatic keratinocytes. | RNA-seq (TruSeq mRNA Sample Prep v2 kit, Illumina, San Diego, CA, USA) |
2018 | Ahn et al. [76] | Biopsies from scalp (8), palmoplantar (2) and conventional (8) plaque psoriasis | RNA-seq analysis identifies a core set of DEGs common to the scalp, palmoplantar and conventional psoriasis, including genes involved in the activation and proliferation of keratinocytes, such as S100A7A, SPRR2A/B, SERPINB4, S100A9, KRT6, C10orf99, LCE3D/E and IL36G. The psoriasis subtypes show a differential expression level of the DEGs in this core set and displayed differences in IL-17A, IFNγ, and IL-22 production. | RNA-seq (HiSeq, Illumina, San Diego, CA, USA) and flow cytometry |
2018 | Cheng et al. [77] | 9 normal and 3 psoriatic epidermis manually separated from the dermis | Characterization of epidermal cell state according to three anatomical sites (scalp, trunk, and foreskin) as well as the psoriatic epidermis using single-cell RNA-seq revealed a discrete set of specialized keratinocytes that exhibit a distinct composition at different anatomic sites. | Single-cell RNA sequencing (HiSeq 2500, HiSeq 4000 or NovaSeq 6000, Illumina, San Diego, CA, USA) |
2018 | Nattkemper et al. [78] | 25 psoriatic skin biopsies | Identification of a gene signature associated with itching is described as “itchscriptome”. These genes are expressed by skin cells, immune cells, and nerves. Their products encode mediators and receptors associated with all aspects of the transmission of itching at the peripheral level. | RNA-seq (NextSeq, Illumina, San Diego, CA, USA) |
2018 | Qiao et al. [79] | 13 psoriatic skin biopsies | Results shed light on the effect of deregulation of circRNA expression and its potential biological functions in regulating immunity, inflammation, and proliferation of psoriasis. The aberrant expression of has_circ_0061012, a circRNA with five miRNA binding sites, may be involved in psoriasis and may be a potential biomarker. | Microarray (human ceRNA array V1.0 4x180K, Shanghai Biotechnology Corporation, Shangai, China) and qRT-PCR |
2019 | Devos et al. [80] | 9 psoriatic skin biopsies (lesional and non-lesional, dermis and epidermis) | TNAIP3 is decreased in the human epidermis, but not in the dermis, suggesting that down-regulation of A20/TNFAIP3 is likely due to a decrease in its expression by keratinocytes. IMQ-induced psoriatic A20-deficient mice show that skin inflammation caused by loss of A20 in keratinocytes drives systemic inflammation, thus offering a promising therapeutic target. | Microarray (MDS Analytical Technologies, Sunnyvale, CA, USA) |
2019 | Pascali et al. [81] | Keratinocytes enriched from 9 psoriatic skin biopsies (lesional and non-lesional) | Gene set enrichment analysis highlighted the dominance of an IL-22/IL-17A signature in psoriatic keratinocytes transcriptome. MetaCore analysis of DEGs revealed significantly enriched sites for multiple transcription factors. Among these, transcription factors still poorly characterized in the context of psoriasis have been identified, namely TRPS1 and HEY2. This study emphasizes the major contribution of keratinocytes in the molecular changes in psoriasis. | Microarray (HTA 2.0, Affymetrix Inc, Santa Clara, CA, USA) and qRT-PCR |
Methodology | Top Upregulated Genes | Top Downregulated Genes | |
---|---|---|---|
Bowcock et al. [60] | Microarray (Affymetrix) | S100A2, S100A7, S100A8, S100A9, SPRR2A, SPRR1B, SPRK, CSTA, FABP5, DEFB2, KRT6A, IFI27, KRT16A, KRT17, SERPINB3, SERPINB4, PI3 | KRT15, JUND, XP5, TNA, CRIP1, COL1A2, GSN, PCBP2, LGALS3, HBA1, MT1L, DF, LGALS1 |
Kulski et al. [63] | Microarray (Affymetrix) | JUNB, YWHAB, LAMP3, SEC61G, KIAA0101, CSTA, OAS1, CCL20, TGM1, SEC61B, GBA, H2AFY, UBE2L6, GM2A, SULT2B1, P4HB, RER1, PSMB6, NMI, IVL | CSPG4, ANP32A, SPTAN1, C11orf11, SSA2, LAMA5, ICA1, MECP2, ALDH3A2, NAB1, DDHD2, ANXA8, ZNF384, OSBPL1A, ZBTB16, ATXN3, DDR1, GPM6B, KCNC1, PCDH21 |
Mee et al. [64] | Microarray (Affymetrix) | SERPINB4, PI3, S100A9, S100A7, DEFB4, KRT6A, SERPINB3, SPRR2B, KRT17, KRT16, SPRR2A, SPRR2D, GJB2, KRT6E, KRT6B, CSTA, SPRR1B, TCN1, SPRR1A, CD24, LCN2, SPRR2E, FABP5 | HBB, HBA2, KRT2A, ZNF91, MUC5B, MT1X, GATA3, LOR, ACTA2, SFTPA2, CST6, TXNIP, MBP, LGALS3, MUC6 |
Gudjonsson et al. [67] | Microarray (Affymetrix) | C10orf99, SPRR2B, S100A7, LCE3D, SPRR2G, WFDC12, S100A9, HAL, IL1F9, DEFB4 | ELOVL3, FLJ32569, HSD3B1, MLSTD1, GAL, KRT6L, THRSP, FADS1, MUC7, SCGB2A1 |
Gudjonsson et al. [68] | Microarray (Affymetrix) | SERPINB4, DEFB4, S100A7L1, PI3, SERPINB3, SPRR2C, AKR1B10, S100A12, S100A9, C10orf99, KYNU, LCE3D, S100A7, CXCL8, KRT16 | WIF1, BTC, THRSP, IL1F7, CCL27, KRT1B, MSMB, ELOVL3, GAL, FABP7, ACSBG1, MLSTD1, HS3ST6, WDR72, SERPINA12 |
Li et al. [72] | RNA-seq (Illumina) | DEFB4A, S100A7A, PI3, LCE3A, S100A12, S100A9, SERPINB4, TCN1, S100A8, CXCL8, TMPRSS11D, S100A7, SPRR2F, TNIP3, SERPINB3, HEPHL1, GDA, AKR1B10, CXCL13, SPRR2A | AADACL3, PM20D1, DGAT2L6, AWAT2, AWAT1, PNPLA5, ROS1, GAL, CYP2W1, UGT3A2, C10orf129, PDE6A, BTC, TRIM55, WIF1, ELOVL3, HGD, HAO2, SYT9, LPPR5 |
Ahn et al. [76] | RNA-seq (Illumina) | IL36A, SPRR2F, SPRR2A, SERPINB4, S100A7A, SPRR2B, PI3, TCN1, S100A9, KRT6C, TMPRSS11D, HEPHL1, SPRR2D, IL17F, C10orf99, LCE3E, KRTAP9-7, LCE3D, AKR1B10, KRTAP13-1 | SERTM1, IL6, ADAMTS16, CYP2W1, FOS, CSF3, BTC, C16orf89, FAM95C, MATN4, PDK4, KRT77, CILP2, UGT3A2, BMP3, NR4A1, WNT2, MAB21L1, HAS1, SERPINE1 |
Pasquali et al. [81] | Microarray (Affymetrix) | PI3, DEFB4A, SERPINB4, TCN1, DEFB4B, S100A9, AKR1B10, S100A7A, KYNU, SERPINB3, IFI6, SPRR2A, IFI27, OAS2, IFI44L, C10orf99, IFI44, HEPHL1, EPGN | FAM26E, NR4A3, KRT77, HIST2H4B, APOD, CA6, KRT31, ATF, ZNF667-AS1, TNFAIP3, C5orf46, FTL, CLDN8, CRABP1, AGR2, CDA, PPAP2A, TRAM2, CRYAB, AF212831.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rioux, G.; Ridha, Z.; Simard, M.; Turgeon, F.; Guérin, S.L.; Pouliot, R. Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes 2020, 11, 1155. https://doi.org/10.3390/genes11101155
Rioux G, Ridha Z, Simard M, Turgeon F, Guérin SL, Pouliot R. Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes. 2020; 11(10):1155. https://doi.org/10.3390/genes11101155
Chicago/Turabian StyleRioux, Geneviève, Zainab Ridha, Mélissa Simard, Florence Turgeon, Sylvain L. Guérin, and Roxane Pouliot. 2020. "Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis" Genes 11, no. 10: 1155. https://doi.org/10.3390/genes11101155
APA StyleRioux, G., Ridha, Z., Simard, M., Turgeon, F., Guérin, S. L., & Pouliot, R. (2020). Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes, 11(10), 1155. https://doi.org/10.3390/genes11101155