Hereditary Hypertrophic Cardiomyopathy in Children and Young Adults—The Value of Reevaluating and Expanding Gene Panel Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Methods
3. Results
3.1. “Pathogenic”/”Likely Pathogenic” Genetic Variants
3.2. Pathogenic/Likely Pathogenic Genetic Variants Found by Trio-Exome in Selected Cases
3.3. Genetic Variants of Unknown Significance (VUS)
3.4. Families without Genetic Findings by Current Strategy
4. Discussion
Limitations of Our Study
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Jefferies, J.L.; Towbin, J.A. Dilated cardiomyopathy. Lancet 2010, 375, 752–762. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Sleeper, L.A.; Towbin, J.A.; Lowe, A.M.; Orav, E.J.; Cox, G.F.; Lurie, P.R.; McCoy, K.L.; McDonald, M.A.; Messere, J.E.; et al. The Incidence of Pediatric Cardiomyopathy in Two Regions of the United States. N. Engl. J. Med. 2003, 348, 1647–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugent, A.W.; Daubeney, P.E.; Chondros, P.; Carlin, J.B.; Cheung, M.; Wilkinson, L.C.; Davis, A.M.; Kahler, S.G.; Chow, C.; Wilkinson, J.L.; et al. The Epidemiology of Childhood Cardiomyopathy in Australia. N. Engl. J. Med. 2003, 348, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Colan, S.D.; Lipshultz, S.E.; Lowe, A.M.; Sleeper, L.A.; Messere, J.; Cox, G.F.; Lurie, P.R.; Orav, E.J.; Towbin, J.A. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: Findings from the Pediatric Cardiomyopathy Registry. Circulation 2007, 115, 773–781. [Google Scholar]
- Gehrmann, J.; Sohlbach, K.; Linnebank, M.; Böhles, H.-J.; Buderus, M.S.; Kehl, H.G.; Vogt, J.; Harms, E.; Marquardt, T. Cardiomyopathy in congenital disorders of glycosylation. Cardiol. Young 2003, 13, 345–351. [Google Scholar] [CrossRef]
- Moak, J.P.; Kaski, J.P. Hypertrophic cardiomyopathy in children. Heart 2012, 98, 1044–1054. [Google Scholar] [CrossRef]
- Fernlund, E.; Österberg, A.W.; Kuchinskaya, E.; Gustafsson, M.; Jansson, K.; Gunnarsson, C. Novel Genetic Variants in BAG3 and TNNT2 in a Swedish Family with a History of Dilated Cardiomyopathy and Sudden Cardiac Death. Pediatr. Cardiol. 2017, 38, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Sofijanova, A.; Jordanov, O. Pediatric Cardiomyopathies. Cardiomyopathies 2013, 121, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Norrish, G.; Field, E.; McLeod, K.; Ilina, M.; Stuart, G.; Bhole, V.; Uzun, O.; Brown, E.; Daubeney, P.E.F.; Lota, A.; et al. Clinical presentation and survival of childhood hypertrophic cardiomyopathy: A retrospective study in United Kingdom. Eur. Heart J. 2019, 40, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.J.; Priori, S.G.; Willems, S.; Berul, C.; Brugada, R.; Calkins, H.; Camm, A.J.; Ellinor, P.T.; Gollob, M.H.; Hamilton, R.M.; et al. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 2011, 13, 1077–1109. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Cowan, J.; Morales, A.; Siegfried, J.D. Progress with genetic cardiomyopathies: Screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Heart Fail. 2009, 2, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.Y.; Abbasi, S.A.; Neilan, T.; Shah, R.; Chen, Y.; Heydari, B.; Cirino, A.; Alison, L.; Lakdawala, N.; Orav, E.J.; et al. T1 Measurements Identify Extracellular Volume Expansion in Hypertrophic Cardiomyopathy Sarcomere Mutation Carriers with and Without Left Ventricular Hypertrophy. Circ. Cardiovasc. Imaging 2013, 6, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, C. Hypertrophic cardiomyopathy and sudden death in the young: Pathologic evidence of myocardial ischemia. Hum. Pathol. 2000, 31, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Varnava, A.M.; Elliott, P.M.; Sharma, S.; McKenna, W.J.; Davies, M.J. Hypertrophic cardiomyopathy: The interrelation of disarray, fibrosis, and small vessel disease. Heart 2000, 84, 476–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonowski, R.; Fernlund, E.; Aletras, A.H.; Engblom, H.; Heiberg, E.; Liuba, P.; Arheden, H.; Carlsson, M. Regional Stress-Induced Ischemia in Non-fibrotic Hypertrophied Myocardium in Young HCM Patients. Pediatr. Cardiol. 2015, 36, 1662–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decker, J.A.; Rossano, J.W.; Smith, E.B.; Cannon, B.; Clunie, S.K.; Gates, C.; Jefferies, J.L.; Kim, J.J.; Price, J.F.; Dreyer, W.J. Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J. Am. Coll. Cardiol. 2009, 54, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Task Force Members; Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar]
- Maron, B.J. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 1996, 276, 199–204. [Google Scholar] [CrossRef]
- Marian, A.J.; Roberts, R. The Molecular Genetic Basis for Hypertrophic Cardiomyopathy. J. Mol. Cell. Cardiol. 2001, 33, 655–670. [Google Scholar] [CrossRef] [Green Version]
- Marian, A.J. Modifier genes for hypertrophic cardiomyopathy. Curr. Opin. Cardiol. 2002, 17, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.E.; McCudden, C.R.; Willis, M.S. Familial hypertrophic cardiomyopathy: Basic concepts and future molecular diagnostics. Clin. Biochem. 2009, 42, 755–765. [Google Scholar] [CrossRef]
- Fernlund, E.; Gyllenhammar, T.; Jablonowski, R.; Carlsson, M.; Larsson, A.; Ärnlöv, J.; Liuba, P. Serum Biomarkers of Myocardial Remodeling and Coronary Dysfunction in Early Stages of Hypertrophic Cardiomyopathy in the Young. Pediatr. Cardiol. 2017, 38, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Fernlund, E.; Schlegel, T.T.; Platonov, P.G.; Carlson, J.; Carlsson, M.; Liuba, P. Peripheral microvascular function is altered in young individuals at risk for hypertrophic cardiomyopathy and correlates with myocardial diastolic function. Am. J. Physiol. Circ. Physiol. 2015, 308, H1351–H1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, A.R.; Williams, E.; Foulger, R.E.; Leigh, S.; Daugherty, L.C.; Niblock, O.; Leong, I.U.S.; Smith, S.E.; Gerasimenko, O.; Haraldsdottir, E.; et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 2019, 51, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. ACMG Laboratory Quality Assurance Committee. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Pettersen, M.D.; Du, W.; Skeens, M.E.; Humes, R.A. Regression Equations for Calculation of Z Scores of Cardiac Structures in a Large Cohort of Healthy Infants, Children, and Adolescents: An Echocardiographic Study. J. Am. Soc. Echocardiogr. 2008, 21, 922–934. [Google Scholar] [CrossRef]
- Östman-Smith, I.; Wisten, A.; Nylander, E.; Bratt, E.-L.; Granelli, A.D.-W.; Oulhaj, A.; Ljungström, E. Electrocardiographic amplitudes: A new risk factor for sudden death in hypertrophic cardiomyopathy. Eur. Heart J. 2009, 31, 439–449. [Google Scholar] [CrossRef]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Duzkale, H.; Shen, J.; McLaughlin, H.; Alfares, A.; Kelly, M.A.; Pugh, T.J.; Funke, B.H.; Rehm, H.L.; Lebo, M.S. A systematic approach to assessing the clinical significance of genetic variants. Clin. Genet. 2013, 84, 453–463. [Google Scholar] [CrossRef]
- Kaski, J.P.; Syrris, P.; Esteban, M.T.T.; Jenkins, S.; Pantazis, A.; Deanfield, J.E.; McKenna, W.J.; Elliott, P.M. Prevalence of Sarcomere Protein Gene Mutations in Preadolescent Children with Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2009, 2, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Brauch, K.M.; Karst, M.L.; Herron, K.J.; De Andrade, M.; Pellikka, P.A.; Rodeheffer, R.J.; Michels, V.V.; Olson, T.M. Mutations in Ribonucleic Acid Binding Protein Gene Cause Familial Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 930–941. [Google Scholar] [CrossRef] [Green Version]
- Fernlund, E.; Andersson, O.; Ellegård, R.; Årstrand, H.K.; Green, H.; Olsson, H.; Gunnarsson, C. The congenital disorder of glycosylation in PGM1 (PGM1-CDG) can cause severe cardiomyopathy and unexpected sudden cardiac death in childhood. Forensic Sci. Int. Genet. 2019, 43, 102111. [Google Scholar] [CrossRef] [PubMed]
- Almomani, R.; Verhagen, J.M.A.; Herkert, J.C.; Brosens, E.; Van Spaendonck-Zwarts, K.Y.; Asimaki, A.; Van Der Zwaag, P.A.; Frohn-Mulder, I.M.E.; Bertoli-Avella, A.M.; Boven, L.G.; et al. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 67, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, J.; Zhang, C.; Wu, G.; Zhu, C.; Tang, B.; Zou, Y.; Huang, X.; Hui, R.; Song, L.; et al. Mutation profile of FLNC gene and its prognostic relevance in patients with hypertrophic cardiomyopathy. Mol. Genet. Genom. Med. 2018, 6, 1104–1113. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.J.; Maron, M.S.; Semsarian, C. Double or compound sarcomere mutations in hypertrophic cardiomyopathy: A potential link to sudden death in the absence of conventional risk factors. Heart Rhythm 2012, 9, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Ingles, J.; Bagnall, R.D.; Semsarian, C. Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: Importance of periodic reassessment. Genet. Med. 2013, 16, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirino, A.L.; Lakdawala, N.K.; McDonough, B.; Conner, L.; Adler, D.; Weinfeld, M.; Gara, P.O.; Rehm, H.L.; Machini, K.; Lebo, M.; et al. A Comparison of Whole Genome Sequencing to Multigene Panel Testing in Hypertrophic Cardiomyopathy Patients. Circ. Cardiovasc. Genet. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Rupp, S.; Felimban, M.; Schänzer, A.; Schranz, D.; Marschall, C.; Zenker, M.; Logeswaran, T.; Neuhäuser, C.; Thul, J.; Jux, C.; et al. Genetic basis of hypertrophic cardiomyopathy in children. Clin. Res. Cardiol. 2019, 108, 282–289. [Google Scholar] [CrossRef]
- Wong, S.Y.-W.; Beamer, L.J.; Gadomski, T.; Honzik, T.; Mohamed, M.; Wortmann, S.B.; Holmefjord, K.S.B.; Mork, M.; Bowling, F.; Sykut-Cegielska, J.; et al. Defining the Phenotype and Assessing Severity in Phosphoglucomutase-1 Deficiency. J. Pediatr. 2016, 175, 130–136.e8. [Google Scholar] [CrossRef] [Green Version]
- Bagnall, R.D.; Ingles, J.; Dinger, M.E.; Cowley, M.J.; Ross, S.B.; Minoche, A.E.; Lal, S.; Turner, C.; Colley, A.; Rajagopalan, S.; et al. Whole Genome Sequencing Improves Outcomes of Genetic Testing in Patients with Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2018, 72, 419–429. [Google Scholar] [CrossRef]
- Al Senaidi, K.; Joshi, N.; Al-Nabhani, M.; Al-Kasbi, G.; Al Farqani, A.; Al-Thihli, K.; Al-Maawali, A. Phenotypic spectrum of ALPK3-related cardiomyopathy. Am. J. Med. Genet. Part A 2019, 179, 1235–1240. [Google Scholar] [CrossRef]
- Jorholt, J.; Formicheva, Y.; Vershinina, T.; Kiselev, A.; Muravyev, A.; Demchenko, E.; Fedotov, P.; Zlotina, A.; Rygkov, A.; Vasichkina, E.; et al. Two New Cases of Hypertrophic Cardiomyopathy and Skeletal Muscle Features Associated with ALPK3 Homozygous and Compound Heterozygous Variants. Genes 2020, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Cheawsamoot, C.; Phokaew, C.; Chetruengchai, W.; Chantranuwat, P.; Puwanant, S.; Tongsima, S.; Khongphathanayothin, A.; Shotelersuk, V. A Pathogenic Variant in ALPK3 Is Associated with an Autosomal Dominant Adult-onset Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Mazzarotto, F.; Whiffin, N.; Buchan, R.; Midwinter, W.; Wilk, A.; Li, N.; Felkin, L.; Ingold, N.; Govind, R.; et al. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: The case of hypertrophic cardiomyopathy. Genome Med. 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, A.M.; Caleshu, C.; Morales, A.; Buchan, J.; Wolf, Z.; Harrison, S.M.; Cook, S.; Dillon, M.W.; Garcia, J.; Haverfield, E.; et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: Recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet. Med. 2018, 20, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruner, C.; Care, M.; Siminovitch, K.; Moravsky, G.; Wigle, E.D.; Woo, A.; Rakowski, H. Sarcomere Protein Gene Mutations in Patients with Apical Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2011, 4, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Towe, E.C.; Bos, J.M.; Ommen, S.R.; Gersh, B.J.; Ackerman, M.J. Genotype-Phenotype Correlations in Apical Variant Hypertrophic Cardiomyopathy. Congenit. Heart Dis. 2014, 10, E139–E145. [Google Scholar] [CrossRef]
- Maron, B.J.; Rowin, E.J.; Maron, M.S. Global Burden of Hypertrophic Cardiomyopathy. JACC Heart Fail. 2018, 6, 376–378. [Google Scholar] [CrossRef]
- McKenna, W.J.; Maron, B.J.; Thiene, G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ. Res. 2017, 121, 722–730. [Google Scholar] [CrossRef] [Green Version]
ABCC9 | DSG2 | HFE2 | MYH7 | PSEN1 | TCAP |
ACTC1 | DSP | IDH2 | MYL2 | PSEN2 | TFR2 |
ACTN2 | EPG5 | JUP | MYL3 | RAB3GAP2 | TNNC1 |
ANKRD1 | EYA4 | JPH2 | MYLK2 | RYR2 | TNNI3 |
BAG3 | FHL1 | LAMP2 | MYPN | RBM20 | TNNT2 |
CSRP3 | FKTN | LDB3 | NEXN | SCN1B | TMEM43 |
CRYAB | GATAD1 | LMNA | PKP2 | SCN5A | TPM1 |
DES | GLA | LZTR1 | PLN | SGCD | TTN |
DMD | HAMP | MYBPC3 | PPP1R13L | SLC40A1 | TTR |
DSC2 | HFE | MYH6 | PRKAG2 | TAZ | VCL |
Family | Pedigree Annotation | Age at Diag. | Gender | HCM/CM SCD, ACA or Htx in Relative (n) | Phenotype of Index Patient | HCM/CM Individuals in Family | Family Members at Risk for HCM/CM | Family History | Genetic Results | ACMG Rules Applied and Classification/Associated with Disease in the Family |
---|---|---|---|---|---|---|---|---|---|---|
1. | II:1 | 7 | F | 2 | ASH, FS 32% | 5 | 11 | Father Htx, Uncle SCD due to HCM, Cousin and cousin’s child with HCM | MYH7 Chr14(GRCh37):g.23900677C>T, NM_000257.3:c.746G>A, p.R249Q | PS2 + PS4 + PM2 + PP1 + PP3 + PP5 Pathogenic/Yes |
2. | I:1 | 22 | M | 1 | Apical LVH | 2 | 8 | Mother SCD due to HCM | No result | No result |
3. | II:1 | 14 | M | 0 | First symptom pro-longed QTc, rapid evolving to HCM ASH and LVNC. | 2 | 3 | Mother mVSD, LVNC | ABCC9 Chr12(GRCh37):g.21997457A>C, NM_005691.3:c.3275T>G p.I1092S | PP3 VUS/Yes |
4. | II:4 | 8 | M | 2 | ASH diastolic impairment | 6 | 9 | Sister, Father, Uncle with HCM, Uncle and grandfather SCD due to HCM | FLNC Chr7(GRCh37):g.128496973C>T, NM_001458.4:c.7559C>T, p.T2520I | PM2 VUS/Yes |
5. | II:1 | 0.1 | M | 0 | Severe LVOTO infant heart surgery | 2 | 3 | Father with pediatric onset of HCM | MYBPC3 Chr11(GRCh37):g.47359334C>T, NM_000256.3:c.2320G>A, p.A774T | None VUS/Yes |
6. | II:6 | 11 | F | 2 | HCM/RCM | 3 | 13 | Index patient and brother with SCD as first symptom | PGM1 Chr1(GRCh37):g.64100506G>A, NM_002633.2:c.689G>A, p.G230E | PM2 + PP3 + PS3 Pathogenic/Yes |
7. | II:1 | 12 | M | 0 | ASH and AS LVOTO | 2 | 3 | Father with HCM ASH | No result | No result |
8. | III:1 | 12 | M | 2 | ASH severe LVH | 3 | 3 | Mother and grandmother SCD due to HCM | MYH7 Chr14(GRCh37):g.23899059C>T, NM_000257.3:c.1063G>A, p.A355T | PM2 + PP1 + PP3 + PP5 Likely Pathogenic/Yes |
9. | III:1 | 15 | M | 0 | LVNC/DCM | 5 | 7 | Mother and aunt with LVNC/DCM | RBM20 Chr10(GRCh37):g.112572067C>G, NM_001134363.2:c.1912C>G, p.P638A and VCL Chr10(GRCh37):g.75873961C>T, NM_014000.2:c.2969 C>T p.A990V | PM1 + PP3 + PM2 + PM5 Likely Pathogenic/Yes PP3 VUS/Yes |
10. | IV:1 | 24 | M | 1 | ASH severe LVH | 3 | 7 | Mother with HCM, grandfather SCD and HCM, brother G+P- | ALPK3 Chr15(GRCh37):g.85370829del, NM_020778.4(ALPK3):c.903del, p.(Ile301Metfs*10) | PVS1 + PM2 Likely Pathogenic/Yes |
Index | Variant | Protein | ClinVar | HGMD | gnomAD | SIFT/MT/PP * | CADD Score |
---|---|---|---|---|---|---|---|
Fam 1 | NM_000257.3(MYH7): c.746G>A | p.(Arg249Gln) | RCV000015144.29 (Pathogenic/Likely pathogenic **—Familial hypertrophic cardiomyopathy 1), RCV000853263.2 (Pathogenic **—Cardiomyopathy), RCV000158761.4 (Pathogenic **—not provided), RCV000229956.5 (Pathogenic **—Hypertrophic cardiomyopathy), RCV000762925.1 (Pathogenic *—Familial hypertrophic cardiomyopathy 1), RCV000617265.1 (Pathogenic *—Cardiovascular phenotype). | CM910268 (DM) | - | D/DC/PrD | 24.7 |
Fam 3 | NM_005691.3(ABCC9): c.3275T>G | p.(Ile1092Ser) | RCV001050293.1 (Uncertain significance *—Dilated cardiomyopathy 1O). | - | ALL:0.0060% AMR:0.0056% NFE:0.011% OTH:0.014% | D/DC/PrD | 29.3 |
Fam 4 | NM_001458.4(FLNC): c.7559C>T | p.(Thr2520Ile) | - | - | - | D/DC/B | 25.4 |
Fam 5 | NM_000256.3(MYBPC3): c.2320G>A | p.(Ala774Thr) | RCV000035486.3 (Uncertain significance *—not specified), RCV000148678.1 (Uncertain significance *—Primary familial hypertrophic cardiomyopathy), RCV000770335.2 (Uncertain significance **—Cardiomyopathy), RCV000766349.1 (Uncertain significance *—not provided), RCV000415709.1 (Uncertain significance—Familial hypertrophic cardiomyopathy 4), RCV001071057.1 (Uncertain significance *—Hypertrophic cardiomyopathy), RCV000415662.1 (Uncertain significance—Left ventricular noncompaction 10). | CM120502 (DM) | ALL:0.0013% NFE:0.0035% | T/P/- | 14.3 |
Fam 6 | NM_002633.2(PGM1): c.689G>A | p.(Gly230Glu) | - | CM1618217 (DM) | - | D/DC/PrD | 25.4 |
Fam 8 | NM_000257.3(MYH7): c.1063G>A | p.(Ala355Thr) | RCV000225736.3 (Likely pathogenic *—not provided), RCV000769462.1 (Likely pathogenic *—Cardiomyopathy), RCV000470458.6 (Pathogenic/Likely pathogenic **—Hypertrophic cardiomyopathy), RCV000624861.2 (Pathogenic/Likely pathogenic **—Primary familial hypertrophic cardiomyopathy), RCV000620233.1 (Likely pathogenic*—Cardiovascular phenotype). | CM031268 (DM) | - | D/DC/PrD | 24 |
Fam 9:1 | NM_001134363.2(RBM20): c.1912C>G | p.(Pro638Ala) | - | - | D/-/PoD | 23.7 | |
Fam 9:2 | NM_014000.2(VCL): c.2969C>T | p.(Ala990Val) | RCV000243207.2 (Uncertain significance *—Cardiovascular phenotype), RCV000539097.5 (Uncertain significance **—Dilated cardiomyopathy 1W), RCV000786265.1 (Uncertain significance—not provided), RCV000515262.1 (Uncertain significance *—Dilated cardiomyopathy 1W), RCV000038820.4 (Uncertain significance**—not specified). | - | ALL:0.029% NFE:0.055% FIN:0.028% OTH:0.055% | D/DC/B | 29 |
Fam 10 | NM_020778.4(ALPK3): c.903del | p.(Ile301Metfs *10) | - | - | ALL:0.0024% NFE:0.0044% FIN:0.0046% | - | 24.1 |
ALG1 | B4GALT7 | DPAGT1 | MGAT2 | PIGN | SLC35C1 |
ALG3 | CHST3 | DPM1 | MOGS | PIGO | SLC35D1 |
ALG6 | CHST6 | EXT1 | MPDU1 | PIGT | SRD5A3 |
ALG8 | CHST14 | EXT2 | MPI | PIGV | SSR4 |
ALG9 | CHSY1 | FKRP | NGLY1 | PMM2 | ST3GAL3 |
ALG11 | COG1 | FKTN | PGAP2 | POMGNT1 | ST3GAL5 |
ALG12 | COG4 | GALNT3 | PGAP3 | POMT1 | STT3A |
ATP6V0A2 | COG5 | GFPT1 | PGM1 | POMT2 | TMEM165 |
B3GALNT2 | COG6 | GMPPB | PGM3 | RFT1 | TUSC3 |
B3GALT6 | COG7 | GNE | PIGA | SEC23B | |
B3GAT3 | COG8 | ISPD | PIGL | SLC35A1 | |
B4GALT1 | DOLK | MAN1B1 | PIGM | SLC35A2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernlund, E.; Kissopoulou, A.; Green, H.; Karlsson, J.-E.; Ellegård, R.; Årstrand, H.K.; Jonasson, J.; Gunnarsson, C. Hereditary Hypertrophic Cardiomyopathy in Children and Young Adults—The Value of Reevaluating and Expanding Gene Panel Analyses. Genes 2020, 11, 1472. https://doi.org/10.3390/genes11121472
Fernlund E, Kissopoulou A, Green H, Karlsson J-E, Ellegård R, Årstrand HK, Jonasson J, Gunnarsson C. Hereditary Hypertrophic Cardiomyopathy in Children and Young Adults—The Value of Reevaluating and Expanding Gene Panel Analyses. Genes. 2020; 11(12):1472. https://doi.org/10.3390/genes11121472
Chicago/Turabian StyleFernlund, Eva, Antheia Kissopoulou, Henrik Green, Jan-Erik Karlsson, Rada Ellegård, Hanna Klang Årstrand, Jon Jonasson, and Cecilia Gunnarsson. 2020. "Hereditary Hypertrophic Cardiomyopathy in Children and Young Adults—The Value of Reevaluating and Expanding Gene Panel Analyses" Genes 11, no. 12: 1472. https://doi.org/10.3390/genes11121472
APA StyleFernlund, E., Kissopoulou, A., Green, H., Karlsson, J. -E., Ellegård, R., Årstrand, H. K., Jonasson, J., & Gunnarsson, C. (2020). Hereditary Hypertrophic Cardiomyopathy in Children and Young Adults—The Value of Reevaluating and Expanding Gene Panel Analyses. Genes, 11(12), 1472. https://doi.org/10.3390/genes11121472