Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Propagation
2.2. Recombinant DNA
2.3. Template Preparation and Sanger Sequencing
2.4. Simultaneous Amplification of the nDNA and mtDNA
3. Results and Discussion
- mtDNA in COS-7 cells is present at >20 copies per cell (our unpublished observations). Assuming that NUMTs and mtDNA are amplified with the same efficiency, the abundance of NUMTs in the final PCR product is expected to be ~5%. As we indicated earlier, we were unable to sequence the near genomic length PCR product (15,617 bp) through this repeat region because of a mixed sequence. However, it is known that Sanger sequencing (implemented without special accommodations as in our case) can only detect a variant sequence if its abundance is >20% [26]. Therefore, we should not have noticed interference from NUMTs, and sequencing difficulties were likely due to a bona fide mtDNA sequence length heteroplasmy.
- Conversely, all near genomic length NUMTs that we are aware of differ in sequence from the resident mtDNA (and ours would be clearly diverged by having an alternate number of repeats). Therefore, if for some reason NUMTs are preferentially amplified so that their abundance increased to >20% to the level detectable by Sanger sequencing, we should have also detected heteroplasmy at other loci, which was not the case.
- Finally, for a 15,617 bp NUMT to be amplifiable, at least three conditions should be met: (a) the NUMT should have a near-genomic length (these are outnumbered by shorter NUMTs in all known genomes. Shorter NUMTs can not be amplified with our long-range primers), (b) our primers should have sufficient homology to NUMTs, and (c) the breaking point for NUMT insertion should have occurred within the short 777 bp region between our primers for long-range amplification, which is unlikely. Collectively, these considerations led us to believe that mtDNA length heteroplasmy in the COS-7 cell line did not result from NUMT contribution.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopps, H.E.; Bernheim, B.C.; Nisalak, A.; Tjio, J.H.; Smadel, J.E. Biologic characteristics of a continuous kidney cell line derived from the african green monkey. J. Immunol. 1963, 91, 416–424. [Google Scholar] [PubMed]
- Gluzman, Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 1981, 23, 175–182. [Google Scholar] [CrossRef]
- Prezioso, C.; Scribano, D.; Bellizzi, A.; Anzivino, E.; Rodio, D.M.; Trancassini, M.; Palamara, A.T.; Pietropaolo, V. Efficient propagation of archetype JC polyomavirus in COS-7 cells: Evaluation of rearrangements within the NCCR structural organization after transfection. Arch. Virol. 2017, 162, 3745–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, Y.; Pena, F.; Aristimuno, O.C.; Matteo, L.; De Agrela, M.; Chemello, M.E.; Michelangeli, F.; Ruiz, M.C. Dissecting the Ca(2)(+) entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res. 2012, 167, 285–296. [Google Scholar] [CrossRef]
- Peckys, D.B.; Stoerger, C.; Latta, L.; Wissenbach, U.; Flockerzi, V.; de Jonge, N. The stoichiometry of the TMEM16A ion channel determined in intact plasma membranes of COS-7 cells using liquid-phase electron microscopy. J. Struct. Biol. 2017, 199, 102–113. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Baek, C.W.; Kim, E.J.; Park, B.S.; Yu, S.B.; Yoon, J.U.; Kim, E.N. Propofol protects against oxidative-stress-induced COS-7 cell apoptosis by inducing autophagy. J. Dent. Anesth. Pain Med. 2017, 17, 37–46. [Google Scholar] [CrossRef]
- Valizadeh, V.; Zakeri, S.; Mehrizi, A.A.; Mirkazemi, S.; Djadid, N.D. Natural acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein (PvDBP-II) equally block erythrocyte binding of homologous and heterologous expressed PvDBP-II on the surface of COS-7 cells. Med. Microbiol. Immunol. 2016, 205, 85–95. [Google Scholar] [CrossRef]
- D’Agostino, M.; Crespi, A.; Polishchuk, E.; Generoso, S.; Martire, G.; Colombo, S.F.; Bonatti, S. ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum. J. Membr. Biol. 2014, 247, 1149–1159. [Google Scholar] [CrossRef]
- Nakao, M.; Hironaka, S.; Harada, N.; Adachi, T.; Bito, T.; Yabuta, Y.; Watanabe, F.; Miura, T.; Yamaji, R.; Inui, H.; et al. Cobalamin deficiency results in an abnormal increase in L-methylmalonyl-co-enzyme-A mutase expression in rat liver and COS-7 cells. Br. J. Nutr. 2009, 101, 492–498. [Google Scholar] [CrossRef]
- Agretti, P.; De Marco, G.; Pinchera, A.; Vitti, P.; Bernal, J.; Tonacchera, M. Ras homolog enriched in striatum inhibits the functional activity of wild type thyrotropin, follicle-stimulating hormone, luteinizing hormone receptors and activating thyrotropin receptor mutations by altering their expression in COS-7 cells. J. Endocrinol. Invest. 2007, 30, 279–284. [Google Scholar] [CrossRef]
- Wang, B.; Yang, G.; Liu, Q.; Qin, J.; Xu, Y.; Li, W.; Liu, X.; Shi, B. Inhibitory action of tongue sole LPXRFa, the piscine ortholog of gonadotropin-inhibitory hormone, on the signaling pathway induced by tongue sole kisspeptin in COS-7 cells transfected with their cognate receptors. Peptides 2017, 95, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, A.; Doci, C.L.; Gutkind, J.S. Using heterologous COS-7 cells to identify semaphorin-signaling components. Methods Mol. Biol. 2017, 1493, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Mitsuuchi, Y.; Toda, K.; Yokoyama, Y.; Miyahara, K.; Miura, S.; Ohnishi, T.; Ichikawa, Y.; Nakao, K.; Imura, H.; et al. Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc. Natl. Acad. Sci. USA 1992, 89, 1458–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simental, J.A.; Sar, M.; Lane, M.V.; French, F.S.; Wilson, E.M. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem. 1991, 266, 510–518. [Google Scholar]
- Nozaki, M.; Haraguchi, S.; Miyazaki, T.; Shigeta, D.; Kano, N.; Lei, X.F.; Kim-Kaneyama, J.R.; Minakata, H.; Miyazaki, A.; Tsutsui, K. Expression of steroidogenic enzymes and metabolism of steroids in COS-7 cells known as non-steroidogenic cells. Sci. Rep. 2018, 8, 2167. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, L.; Moraes, C.T. Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids. Proc. Natl. Acad. Sci. USA 1997, 94, 9131–9135. [Google Scholar] [CrossRef] [Green Version]
- Omote, K.; Nishida, C.; Dick, M.H.; Masuda, R. Limited phylogenetic distribution of a long tandem-repeat cluster in the mitochondrial control region in Bubo (Aves, Strigidae) and cluster variation in Blakiston’s fish owl (Bubo blakistoni). Mol. Phylogenet. Evol. 2013, 66, 889–897. [Google Scholar] [CrossRef]
- Mundy, N.I.; Winchell, C.S.; Woodruff, D.S. Tandem repeats and heteroplasmy in the mitochondrial DNA control region of the loggerhead shrike (Lanius ludovicianus). J. Hered. 1996, 87, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Padhi, A. Geographic variation within a tandemly repeated mitochondrial DNA D-loop region of a North American freshwater fish, Pylodictis olivaris. Gene 2014, 538, 63–68. [Google Scholar] [CrossRef]
- Casane, D.; Dennebouy, N.; de Rochambeau, H.; Mounolou, J.C.; Monnerot, M. Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of lagomorphs. Mol. Biol. Evol. 1997, 14, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Spadafora, D.; Kozhukhar, N.; Chouljenko, V.N.; Kousoulas, K.G.; Alexeyev, M.F. Methods for efficient elimination of mitochondrial DNA from cultured cells. PLoS ONE 2016, 11, e0154684. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russel, D.W. Molecular Cloning. A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.R.; Deng, Z.N.; Chen, Y.B.; Hu, B.W.; Lu, J.J.; Long, Y.L.; Xiong, X.Y. Construction of tandem repeats of DNA fragments by a polymerase chain reaction-based method. DNA Cell Biol. 2012, 31, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Hommelsheim, C.M.; Frantzeskakis, L.; Huang, M.; Ulker, B. PCR amplification of repetitive DNA: A limitation to genome editing technologies and many other applications. Sci. Rep. 2014, 4, 5052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, C.J.; Zeringer, E.; Champion, K.J.; Gauthier, M.P.; Wang, F.; Boonyaratanakornkit, J.; Jones, J.R.; Schreiber, E. Improving the limit of detection for Sanger sequencing: A comparison of methodologies for KRAS variant detection. Biotechniques 2012, 53, 182–188. [Google Scholar] [CrossRef] [PubMed]
Species | Accession# | Unit Length | Number of Units | Repeat Length | % Unit Identity | Group |
---|---|---|---|---|---|---|
Homo sapiens | NC_012920.1 | 0 | 0 | 0 | 0 | Humans |
Pan paniscus | HM015213.1 | 0 | 0 | 0 | 0 | Great apes |
GU189677.1 | 0 | 0 | 0 | 0 | ||
GU189676.1 | 0 | 0 | 0 | 0 | ||
GU189675.1 | 0 | 0 | 0 | 0 | ||
GU189674.1 | 0 | 0 | 0 | 0 | ||
JF727231.3 | 0 | 0 | 0 | 0 | ||
JF727228.2 | 0 | 0 | 0 | 0 | ||
Pan troglodytes | JF727179.2 | 0 | 0 | 0 | 0 | Great apes |
JF727176.2 | 0 | 0 | 0 | 0 | ||
JF727166.2 | 0 | 0 | 0 | 0 | ||
JF727173.1 | 0 | 0 | 0 | 0 | ||
EU095335.1 | 0 | 0 | 0 | 0 | ||
NC_001643.1 | 0 | 0 | 0 | 0 | ||
Gorilla gorilla | NC_001645.1 | 0 | 0 | 0 | 0 | Great apes |
KF914214.1 | 0 | 0 | 0 | 0 | ||
NC_011120.1 | 0 | 0 | 0 | 0 | ||
Pongo pygmaeus | NC_001646.1 | 0 | 0 | 0 | 0 | Great apes |
KU353723.1 | 0 | 0 | 0 | 0 | ||
D38115.1 | 0 | 0 | 0 | 0 | ||
NC_002083.1 | 0 | 0 | 0 | 0 | ||
Hoolock leuconedys | KY250074.1 | 36 | 1.9 | 68 | 93 | Lesser apes |
NC_033885.1 | 0 | 0 | 0 | 0 | ||
NC_033884.1 | 0 | 0 | 0 | 0 | ||
NC_033883.1 | 0 | 0 | 0 | 0 | ||
NC_033882.1 | 0 | 0 | 0 | 0 | ||
Hylobates lar | NC_002082.1 | 0 | 0 | 0 | 0 | Lesser apes |
HQ622775.1 | 0 | 0 | 0 | 0 | ||
NC_002082.1 | 0 | 0 | 0 | 0 | ||
Hoolock hoolock | NC_033885.1 | 0 | 0 | 0 | 0 | Lesser apes |
Chlorocebus aethiops | MN816163 | 108 | 5 | 540 | 100 | Old world |
NC_007009.1 | 0 | 0 | 0 | 0 | ||
KU682691.1 | 0 | 0 | 0 | 0 | ||
Chlorocebus pygerythrus | KU682698.1 | 0 | 0 | 0 | 0 | Old world |
KU682694.1 | 0 | 0 | 0 | 0 | ||
KU682696.1 | 0 | 0 | 0 | 0 | ||
EF597501.1 | 0 | 0 | 0 | 0 | ||
EF597500.1 | 0 | 0 | 0 | 0 | ||
NC_009747.1 | 0 | 0 | 0 | 0 | ||
Chlorocebus cynosuros | KM262190.1 | 0 | 0 | 0 | 0 | Old world |
JQ256915.1 | 0 | 0 | 0 | 0 | ||
KU682693.1 | 0 | 0 | 0 | 0 | Old world | |
NC_024933.1 | 0 | 0 | 0 | 0 | ||
Chlorocebus sabaeus | KU682697.1 | 122 | 3.1 | 378 | 100 | Old world |
NC_008066.1 | 0 | 0 | 0 | 0 | ||
DQ069713.1 | 0 | 0 | 0 | 0 | ||
EF597503.1 | 0 | 0 | 0 | 0 | ||
Chlorocebus djamdjamensis | KU682695.1 | 0 | 0 | 0 | 0 | Old world |
Chlorocebus tantalus | KU682699.1 | 130 | 2.1 | 273 | 99 | |
EF597502.1 | 0 | 0 | 0 | 0 | ||
KU682700.1 | 0 | 0 | 0 | 0 | ||
NC_009748.1 | 0 | 0 | 0 | 0 | ||
Allenopithecus nigroviridis | NC_023965.1 | 0 | 0 | 0 | 0 | Old world |
KJ434962.1 | 0 | 0 | 0 | 0 | ||
JQ256993.1 | 0 | 0 | 0 | 0 | ||
Alouatta seniculus | HQ644333.1 | 10 | 3.7 | 37 | 100 | New world |
NC_027825.1 | 10 | 3.7 | 37 | 100 | ||
Saimiri oerstedii oerstedii | HQ644337.1 | 0 | 0 | 0 | 0 | New world |
Tarsius dentatus | NC_024052.1 | 35 | 9.8 | 343 | 99 | Tarsiers |
Indiri Indiri | NC_026095.1 | 20 | 13.4 | 268 | 91 | Lemuriformes |
KJ944237.1 | 20 | 13.4 | 268 | 91 | ||
KJ944258.1 | 24 | 12.8 | 307 | 96 | ||
KJ944231.1 | 22 | 14.6 | 321 | 93 | ||
KJ944231.1 | 28 | 7.9 | 221 | 90 | ||
KJ944198.1 | 44 | 6.7 | 294 | 91 | ||
Loris lydekkerianus | NC_021955.1 | 14 | 18.9 | 264 | 95 | Lemuriformes |
Galago senegalensis | NC_012761.1 | 14 | 18.6 | 260 | 98 | Lemuriformes |
Galeopterus variegatus | NC_004031.1 | 40 | 4.5 | 180 | 98 | Dermoptera |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhukhar, N.; Mitta, S.; Alexeyev, M.F. Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line. Genes 2020, 11, 607. https://doi.org/10.3390/genes11060607
Kozhukhar N, Mitta S, Alexeyev MF. Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line. Genes. 2020; 11(6):607. https://doi.org/10.3390/genes11060607
Chicago/Turabian StyleKozhukhar, Nataliya, Sunil Mitta, and Mikhail F. Alexeyev. 2020. "Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line" Genes 11, no. 6: 607. https://doi.org/10.3390/genes11060607
APA StyleKozhukhar, N., Mitta, S., & Alexeyev, M. F. (2020). Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line. Genes, 11(6), 607. https://doi.org/10.3390/genes11060607