Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies
Abstract
:1. Introduction
2. Clinical Presentation of Female Dystrophin Mutation Carriers
3. Mechanisms Underlying DMD/BMD Manifestation in Females
3.1. Chromosomal Aberrations
3.2. Simple Inheritance
3.3. Hormonal Events
4. Cardiac Phenotypes of Cellular and Female Animal Dystrophinopathy Models
4.1. Cellular Models
4.2. Animal Models
5. Implications for Therapy: How Much Dystrophin Is Enough for the Heart?
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emery, A.E.H. Population frequencies of inherited neuromuscular diseases-a world survey. Neuromuscul. Disord. 1991, 1, 19–29. [Google Scholar] [CrossRef]
- Mendell, J.R.; Shilling, C.; Leslie, N.D.; Flanigan, K.M.; Al-Dahhak, R.; Gastier-Foster, J.; Kneile, K.; Dunn, D.M.; Duval, B.; Aoyagi, A.; et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann. Neurol. 2012, 71, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Manzur, A.; Kinali, M.; Muntoni, F. Update on the management of Duchenne muscular dystrophy. Arch. Dis. Child. 2008, 93, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Mah, J.K. Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatr. Dis. Treat. 2016, 12, 1795–1807. [Google Scholar] [CrossRef] [Green Version]
- Bushby, K.; Finkel, R.; Birnkrant, D.J.; Case, L.E.; Clemens, P.R.; Cripe, L.; Kaul, A.; Kinnett, K.; McDonald, C.; Pandya, S.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010, 9, 77–93. [Google Scholar] [CrossRef]
- Hoffman, E.P.; Brown, R.H.; Kunkel, L.M. Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
- Blake, D.J.; Weir, A.; Newey, S.E.; Davies, K.E. Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle. Physiol. Rev. 2002, 82, 291–329. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.A.; Cole, N.M.; Matsumura, K.; Phelps, S.F.; Hauschka, S.D.; Campbell, K.P.; Faulkner, J.A.; Chamberlain, J.S. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 1993, 364, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Monaco, A.P.; Bertelson, C.J.; Liechti-Gallati, S.; Moser, H.; Kunkel, L.M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988, 2, 90–95. [Google Scholar] [CrossRef]
- Papa, A.A.; D’Ambrosio, P.; Petillo, R.; Palladino, A.; Politano, L. Heart transplantation in patients with dystrophinopathic cardiomyopathy: Review of the literature and personal series. Intractable Rare Dis. Res. 2017, 6, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Alcántara, M.; García-Cavazos, R.; Hernández-U, E.; Angel, A.G.-d.; Carnevale, A.; Orozco, L. Carrier detection and prenatal molecular diagnosis in a Duchenne muscular dystrophy family without any affected relative available. Ann. Génétique 2001, 44, 149–153. [Google Scholar]
- Grimm, T.; Kress, W.; Meng, G.; Müller, C.R. Risk assessment and genetic counseling in families with Duchenne muscular dystrophy. Acta Myol. 2012, 31, 179–183. [Google Scholar]
- Hoogerwaard, E.M.; Van Der Wouw, P.A.; Wilde, A.A.M.; Bakker, E.; Ippel, P.F.; Oosterwijk, J.C.; Majoor-Krakauer, D.F.; Van Essen, A.J.; Leschot, N.J.; De Visser, M. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 1999, 9, 347–351. [Google Scholar] [CrossRef]
- Soltanzadeh, P.; Friez, M.J.; Dunn, D.; von Niederhausern, A.; Gurvich, O.L.; Swoboda, K.J.; Sampson, J.B.; Pestronk, A.; Connolly, A.M.; Florence, J.M.; et al. Clinical and genetic characterization of manifesting carriers of DMD mutations. Neuromuscul. Disord. 2010, 20, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viggiano, E.; Ergoli, M.; Picillo, E.; Politano, L. Determining the role of skewed X-chromosome inactivation in developing muscle symptoms in carriers of Duchenne muscular dystrophy. Hum. Genet. 2016, 135, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Giliberto, F.; Radic, C.P.; Luce, L.; Ferreiro, V.; de Brasi, C.; Szijan, I. Symptomatic female carriers of Duchenne muscular dystrophy (DMD): Genetic and clinical characterization. J. Neurol. Sci. 2014, 336, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Kamakura, K. Cardiac Involvement of Female Carrier of Duchenne Muscular Dystrophy. Intern. Med. 2000, 39, 2–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizaki, M.; Kobayashi, M.; Adachi, K.; Matsumura, T.; Kimura, E. Female dystrophinopathy: Review of current literature. Neuromuscul. Disord. 2018, 28, 572–581. [Google Scholar] [CrossRef]
- Nally, E.M.M.; Kaltman, J.R.; Benson, D.W.; Canter, C.E.; Cripe, L.H.; Duan, D.; Finder, J.D.; Groh, W.J.; Hoffman, E.P.; Judge, D.P.; et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation 2015, 131, 1590–1598. [Google Scholar]
- Schram, G.; Fournier, A.; Leduc, H.; Dahdah, N.; Therien, J.; Vanasse, M.; Khairy, P. All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 2013, 61, 948–954. [Google Scholar] [CrossRef]
- Palladino, A.; D’Ambrosio, P.; Papa, A.A.; Petillo, R.; Orsini, C.; Scutifero, M.; Nigro, G.; Politano, L. Management of cardiac involvement in muscular dystrophies: Paediatric versus adult forms. Acta Myol. 2016, 35, 128–134. [Google Scholar]
- Kamdar, F.; Garry, D.J. Dystrophin-Deficient Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 67, 2533–2546. [Google Scholar] [CrossRef]
- Mah, M.L.; Cripe, L.; Slawinski, M.K.; Al-Zaidy, S.A.; Camino, E.; Lehman, K.J.; Jackson, J.L.; Iammarino, M.; Miller, N.; Mendell, J.R.; et al. Duchenne and Becker muscular dystrophy carriers: Evidence of cardiomyopathy by exercise and cardiac MRI testing. Int. J. Cardiol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Stollberger, C. Muscle, cardiac, and cerebral manifestations in female carriers of dystrophin variants. J. Neurol. Sci. 2018, 388, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Martinez, H.R.; Pignatelli, R.; Belmont, J.W.; Craigen, W.J.; Jefferies, J.L. Childhood onset of left ventricular dysfunction in a female manifesting carrier of muscular dystrophy. Am. J. Med. Genet. Part A 2011, 155, 3025–3029. [Google Scholar] [CrossRef] [PubMed]
- Tunteeratum, A.; Witoonpanich, R.; Phudhichareonrat, S.; Eu-ahsunthornwattana, J.; Pingsuthiwong, S.; Srichan, K.; Sura, T. Congestive Heart Failure With Rhabdomyolysis and Acute Renal Failure in a Manifesting Female Carrier of Duchenne Muscular Dystrophy With Duplication of Dystrophin Gene. J. Clin. Neuromuscul. Dis. 2009, 11, 49–53. [Google Scholar] [CrossRef]
- Walcher, T.; Kunze, M.; Steinbach, P.; Sperfeld, A.-D.; Burgstahler, C.; Hombach, V.; Torzewski, J. Cardiac involvement in a female carrier of Duchenne muscular dystrophy. Int. J. Cardiol. 2010, 138, 302–305. [Google Scholar] [CrossRef]
- Melacini, P.; Fanin, M.; Angelini, A.; Pegoraro, E.; Livi, U.; Danieli, G.A.; Hoffman, E.P.; Thiene, G.; Volta, S.D.; Angelini, C. Cardiac transplantation in a Duchenne muscular dystrophy carrier. Neuromuscul. Disord. 1998, 8, 585–590. [Google Scholar] [CrossRef]
- Schmidt-Achert, M.; Fischer, P.; Pongratz, D. Myocardial evidence of dystrophin mosaic in a Duchenne muscular dystrophy carrier. Lancet 1992, 340, 1235–1236. [Google Scholar] [CrossRef]
- Yue, Y. Full-length dystrophin expression in half of the heart cells ameliorates -isoproterenol-induced cardiomyopathy in mdx mice. Hum. Mol. Genet. 2004, 13, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Cooper, B.J.; Gallagher, E.A.; Smith, C.A.; Valentine, B.A.; Winand, N.J. Mosaic expression of dystrophin in carriers of canine X-linked muscular dystrophy. Lab. Investig. 1990, 62, 171–178. [Google Scholar]
- Kane, A.M.; DeFrancesco, T.C.; Boyle, M.C.; Malarkey, D.E.; Ritchey, J.W.; Atkins, C.E.; Cullen, J.M.; Kornegay, J.N.; Keene, B.W. Cardiac structure and function in female carriers of a canine model of Duchenne muscular dystrophy. Res. Vet. Sci. 2013, 94, 610–617. [Google Scholar] [CrossRef]
- Papa, R.; Madia, F.; Bartolomeo, D.; Trucco, F.; Pedemonte, M.; Traverso, M.; Broda, P.; Bruno, C.; Zara, F.; Minetti, C.; et al. Genetic and Early Clinical Manifestations of Females Heterozygous for Duchenne/Becker Muscular Dystrophy. Pediatr. Neurol. 2016, 55, 58–63. [Google Scholar] [CrossRef]
- Fujii, K.; Minami, N.; Hayashi, Y.; Nishino, I.; Nonaka, I.; Tanabe, Y.; Takanashi, J.; Kohno, Y. Homozygous female Becker muscular dystrophy. Am. J. Med. Genet. Part A 2009, 149A, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Muntoni, F. Multiple pathogenetic mechanisms in X linked dilated cardiomyopathy. Heart 2004, 90, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, A. X-linked dilated cardiomyopathy: A cardiospecific phenotype of dystrophinopathy. Pharmaceuticals 2015, 8, 303–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towbin, J.A.; Hejtmancik, J.F.; Brink, P.; Gelb, B.; Zhu, X.M.; Chamberlain, J.S.; McCabe, E.R.B.; Swift, M. X-linked dilated cardiomyopathy: Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 1993, 87, 1854–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, R.G.; Nitowsky, H.M.; Childs, B. Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. Natl. Acad. Sci. USA 1963, 50, 481–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azofeifa, J.; Voit, T.; Hübner, C.; Cremer, M. X-chromosome methylation in manifesting and healthy carriers of dystrophinopathies: Concordance of activation ratios among first degree female relatives and skewed inactivation as cause of the affected phenotypes. Hum. Genet. 1995, 96, 167–176. [Google Scholar] [CrossRef]
- Richards, C.S.; Watkins, S.C.; Hoffman, E.P.; Schneider, N.R.; Milsark, I.W.; Katz, K.S.; Cook, J.D.; Kunkel, L.M.; Cortada, J.M. Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy. Am. J. Hum. Genet. 1990, 46, 672–681. [Google Scholar]
- Yoshioka, M.; Yorifuji, T.; Mituyoshi, I. Skewed X inactivation in manifesting carriers of Duchenne muscular dystrophy. Clin. Genet. 2008, 53, 102–107. [Google Scholar] [CrossRef]
- Muers, M.R.; Sharpe, J.A.; Garrick, D.; Sloane-Stanley, J.; Nolan, P.M.; Hacker, T.; Wood, W.G.; Higgs, D.R.; Gibbons, R.J. Defining the Cause of Skewed X-Chromosome Inactivation in X-Linked Mental Retardation by Use of a Mouse Model. Am. J. Hum. Genet. 2007, 80, 1138–1149. [Google Scholar] [CrossRef] [Green Version]
- Wenger, S.L.; Steele, M.W.; Hoffman, E.P.; Barmada, M.A.; Wessel, H.B. X inactivation and dystrophin studies in a t(X;12) female: Evidence for biochemical normalization in Duchenne muscular dystrophy carriers. Am. J. Med. Genet. 1992, 43, 1012–1015. [Google Scholar] [CrossRef]
- Verellen-Dumoulin, C.; Freund, M.; De Meyer, R.; Laterre, C.; Frédéric, J.; Thompson, M.W.; Markovic, V.D.; Worton, R.G. Expression of an X-linked muscular dystrophy in a female due to translocation involving Xp21 and non-random inactivation of the normal X chromosome. Hum. Genet. 1984, 67, 115–119. [Google Scholar] [CrossRef]
- Engel, E.; DeLozier-Blanchet, C.D. Uniparental disomy, isodisomy, and imprinting: Probable effects in man and strategies for their detection. Am. J. Med. Genet. 1991, 40, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Quan, F.; Janas, J.; Toth-Fejel, S.E.; Johnson, D.B.; Wolford, J.K.; Popovich, B.W. Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy. Am. J. Hum. Genet. 1997, 60, 160–165. [Google Scholar] [PubMed]
- Chelly, J.; Marlhens, F.; Le Marec, B.; Jeanpierre, M.; Lambert, M.; Hamard, G.; Dutrillaux, B.; Kaplan, J.C. De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy. Hum. Genet. 1986, 74, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Doswell, B.H.; Visootsak, J.; Brady, A.N.; Graham, J.M. Turner Syndrome: An Update and Review for the Primary Pediatrician. Clin. Pediatr. 2006, 45, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Li, S.; Li, Q.; Chen, X.; Liu, W.; Sun, X. Duchenne muscular dystrophy in a female patient with a karyotype of 46,X,i(X)(q10). Tohoku J. Exp. Med. 2010, 222, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Katayama, Y.; Tran, V.K.; Hoan, N.T.; Zhang, Z.; Goji, K.; Yagi, M.; Takeshima, Y.; Saiki, K.; Nhan, N.T.; Matsuo, M. Co-occurrence of mutations in both dystrophin- and androgen-receptor genes is a novel cause of female Duchenne muscular dystrophy. Hum. Genet. 2006, 119, 516–519. [Google Scholar] [CrossRef]
- Sinnecker, G.H.G.; Hiort, O.; Dibbelt, L.; Albers, N.; Dörr, H.G.; Hauß, H.; Heinrich, U.; Hemminghaus, M.; Hoepffner, W.; Holder, M.; et al. Phenotypic classification of male pseudohermaphroditism due to steroid 5α-reductase 2 deficiency. Am. J. Med. Genet. 1996, 63, 223–230. [Google Scholar] [CrossRef]
- Brown, C.J.; Goss, S.J.; Lubahn, D.B.; Joseph, D.R.; Wilson, E.M.; French, F.S.; Willard, H.F. Androgen receptor locus on the human X chromosome: Regional localization to Xq11-12 and description of a DNA polymorphism. Am. J. Hum. Genet. 1989, 44, 264–269. [Google Scholar]
- Nguyen, Q.; Lim, K.R.Q.; Yokota, T. Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies. Int. J. Mol. Sci. 2020, 21, 733. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.R.Q.; Yoon, C.; Yokota, T. Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. J. Pers. Med. 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piga, D.; Salani, S.; Magri, F.; Brusa, R.; Mauri, E.; Comi, G.P.; Bresolin, N.; Corti, S. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther. Adv. Neurol. Disord. 2019, 12, 175628641983347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalra, S.; Montanaro, F.; Denning, C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J. Neuromuscul. Dis. 2016, 3, 309–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchieu, J.; Kuoy, E.; Chin, M.H.; Trinh, H.; Patterson, M.; Sherman, S.P.; Aimiuwu, O.; Lindgren, A.; Hakimian, S.; Zack, J.A.; et al. Female Human iPSCs Retain an Inactive X Chromosome. Cell Stem Cell 2010, 7, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Miyagoe-Suzuki, Y.; Nishiyama, T.; Nakamura, M.; Narita, A.; Takemura, F.; Masuda, S.; Minami, N.; Murayama, K.; Komaki, H.; Goto, Y.; et al. Induction of Pluripotent Stem Cells from a Manifesting Carrier of Duchenne Muscular Dystrophy and Characterization of Their X-Inactivation Status. Stem Cells Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Eisen, B.; Ben Jehuda, R.; Cuttitta, A.J.; Mekies, L.N.; Shemer, Y.; Baskin, P.; Reiter, I.; Willi, L.; Freimark, D.; Gherghiceanu, M.; et al. Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J. Cell. Mol. Med. 2019, 23, 2125–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, A.Y.L.; Horvath, L.M.; Carrel, L.; Ellis, J. X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells. Front. Psychiatry 2012, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Barakat, T.S.; Ghazvini, M.; de Hoon, B.; Li, T.; Eussen, B.; Douben, H.; van der Linden, R.; van der Stap, N.; Boter, M.; Laven, J.S.; et al. Stable X Chromosome Reactivation in Female Human Induced Pluripotent Stem Cells. Stem Cell Reports 2015, 4, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekhoubad, S.; Bock, C.; de Boer, A.S.; Kiskinis, E.; Meissner, A.; Eggan, K. Erosion of Dosage Compensation Impacts Human iPSC Disease Modeling. Cell Stem Cell 2012, 10, 595–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.; Li, H.; Tiburcy, M.; Rodriguez-Caycedo, C.; Kyrychenko, V.; Zhou, H.; Zhang, Y.; Min, Y.-L.; Shelton, J.M.; Mammen, P.P.A.; et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 2018, 4, eaap9004. [Google Scholar] [CrossRef] [Green Version]
- Sicinski, P.; Geng, Y.; Ryder-Cook, A.S.; Barnard, E.A.; Darlison, M.G.; Barnard, P.J. The molecular basis of muscular dystrophy in the mdx mouse: A point mutation. Science 1989, 244, 1578–1580. [Google Scholar] [CrossRef] [PubMed]
- Bostick, B.; Yue, Y.; Long, C.; Duan, D. Prevention of Dystrophin-Deficient Cardiomyopathy in Twenty-One-Month-Old Carrier Mice by Mosaic Dystrophin Expression or Complementary Dystrophin/Utrophin Expression. Circ. Res. 2008, 102, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, T.A.; Heitzman, J.A.; Townsend, D. DMD carrier model with mosaic dystrophin expression in the heart reveals complex vulnerability to myocardial injury. Hum. Mol. Genet. 2020, 29, 944–954. [Google Scholar] [CrossRef]
- Westering, T.L.E.; Lomonosova, Y.; Coenen-Stass, A.M.L.; Betts, C.A.; Bhomra, A.; Hulsker, M.; Clark, L.E.; McClorey, G.; Aartsma-Rus, A.; Putten, M.; et al. Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. J. Cachexia Sarcopenia Muscle 2020, 11, 578–593. [Google Scholar] [CrossRef] [Green Version]
- van Putten, M.; Hulsker, M.; Nadarajah, V.D.; van Heiningen, S.H.; van Huizen, E.; van Iterson, M.; Admiraal, P.; Messemaker, T.; den Dunnen, J.T.; ’t Hoen, P.A.C.; et al. The Effects of Low Levels of Dystrophin on Mouse Muscle Function and Pathology. PLoS ONE 2012, 7, e31937. [Google Scholar] [CrossRef] [Green Version]
- van Putten, M.; van der Pijl, E.M.; Hulsker, M.; Verhaart, I.E.C.; Nadarajah, V.D.; van der Weerd, L.; Aartsma-Rus, A. Low dystrophin levels in heart can delay heart failure in mdx mice. J. Mol. Cell. Cardiol. 2014, 69, 17–23. [Google Scholar] [CrossRef] [Green Version]
- van Putten, M.; Hulsker, M.; Young, C.; Nadarajah, V.D.; Heemskerk, H.; van der Weerd, L.; ’t Hoen, P.A.C.; van Ommen, G.-J.B.; Aartsma-Rus, A.M. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice. FASEB J. 2013, 27, 2484–2495. [Google Scholar] [CrossRef]
- Gonzalez, J.P.; Kyrychenko, S.; Kyrychenko, V.; Schneider, J.S.; Granier, C.J.; Himelman, E.; Lahey, K.C.; Zhao, Q.; Yehia, G.; Tao, Y.-X.; et al. Small Fractions of Muscular Dystrophy Embryonic Stem Cells Yield Severe Cardiac and Skeletal Muscle Defects in Adult Mouse Chimeras. Stem Cells 2017, 35, 597–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bostick, B.; Yue, Y.; Duan, D. Gender influences cardiac function in the mdx model of duchenne cardiomyopathy. Muscle Nerve 2010, 42, 600–603. [Google Scholar] [CrossRef]
- Chamberlain, J.S.; Metzger, J.; Reyes, M.; Townsend, D.; Faulkner, J.A. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J. 2007, 21, 2195–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Putten, M.; Putker, K.; Overzier, M.; Adamzek, W.A.; Pasteuning-Vuhman, S.; Plomp, J.J.; Aartsma-Rus, A. Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy. FASEB J. 2019, 33, 8110–8124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasala, N.B.; Yue, Y.; Vance, J.; Duan, D. Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy. J. Mol. Cell. Cardiol. 2017, 102, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Newall, A.E.T. Primary non-random X inactivation associated with disruption of Xist promoter regulation. Hum. Mol. Genet. 2001, 10, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Deconinck, A.E.; Rafael, J.A.; Skinner, J.A.; Brown, S.C.; Potter, A.C.; Metzinger, L.; Watt, D.J.; Dickson, J.G.; Tinsley, J.M.; Davies, K.E. Utrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy. Cell 1997, 90, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Grady, R.M.; Teng, H.; Nichol, M.C.; Cunningham, J.C.; Wilkinson, R.S.; Sanes, J.R. Skeletal and Cardiac Myopathies in Mice Lacking Utrophin and Dystrophin: A Model for Duchenne Muscular Dystrophy. Cell 1997, 90, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Nonaka, I.; Hirai, S.; Ozawa, E. Reciprocal expression of dystrophin and utrophin in muscles of Duchenne muscular dystrophy patients, female DMD-carriers and control subjects. J. Neurol. Sci. 1993, 119, 43–52. [Google Scholar] [CrossRef]
- Stillwell, E.; Vitale, J.; Zhao, Q.; Beck, A.; Schneider, J.; Khadim, F.; Elson, G.; Altaf, A.; Yehia, G.; Dong, J.; et al. Blastocyst Injection of Wild Type Embryonic Stem Cells Induces Global Corrections in Mdx Mice. PLoS ONE 2009, 4, e4759. [Google Scholar] [CrossRef]
- Florian, A.; Rösch, S.; Bietenbeck, M.; Engelen, M.; Stypmann, J.; Waltenberger, J.; Sechtem, U.; Yilmaz, A. Cardiac involvement in female Duchenne and Becker muscular dystrophy carriers in comparison to their first-degree male relatives: A comparative cardiovascular magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.H.; McNally, E.M. Modifier genes and their effect on Duchenne muscular dystrophy. Curr. Opin. Neurol. 2015, 28, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, G.A.; Phelps, S.F.; Chapman, V.M.; Chamberlain, J.S. New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin. Nat. Genet. 1993, 4, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Im, W.; Phelps, S.F.; Copen, E.H.; Adams, E.G.; Slightom, J.L.; Chamberlain, J.S. Differential expression of dystrophin isoforms in strains of mdx mice with different mutations. Hum. Mol. Genet. 1996, 5, 1149–1153. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Yue, Y.; Duan, D. Marginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice. PLoS ONE 2010, 5, e15286. [Google Scholar] [CrossRef] [Green Version]
- Gaschen, L.; Lang, J.; Lin, S.; Adé-Damilano, M.; Busato, A.; Lombard, C.W.; Gaschen, F.P. Cardiomyopathy in Dystrophin-Deficient Hypertrophic Feline Muscular Dystrophy. J. Vet. Intern. Med. 1999, 13, 346. [Google Scholar] [CrossRef]
- Moise, N.S.; Valentine, B.A.; Brown, C.A.; Erb, H.N.; Beck, K.A.; Cooper, B.J.; Gilmour, R.F. Duchenne’s cardiomyopathy in a canine model: Electrocardiographic and echocardiographic studies. J. Am. Coll. Cardiol. 1991, 17, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.; Yokota, T. Antisense oligonucleotides for the treatment of cardiomyopathy in Duchenne muscular dystrophy. Am. J. Transl. Res. 2019, 11, 1202–1218. [Google Scholar]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Hakim, C.H.; Wasala, N.B.; Nelson, C.E.; Wasala, L.P.; Yue, Y.; Louderman, J.A.; Lessa, T.B.; Dai, A.; Zhang, K.; Jenkins, G.J.; et al. AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Lau, Y.S.; Gao, Y.; Li, H.; Han, R. Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice. Mol. Ther. 2019, 27, 1407–1414. [Google Scholar] [CrossRef]
- Tsoumpra, M.K.; Fukumoto, S.; Matsumoto, T.; Takeda, S.; Wood, M.J.A.; Aoki, Y. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 2019, 45, 630–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jearawiriyapaisarn, N.; Moulton, H.M.; Buckley, B.; Roberts, J.; Sazani, P.; Fucharoen, S.; Iversen, P.L.; Kole, R. Sustained Dystrophin Expression Induced by Peptide-conjugated Morpholino Oligomers in the Muscles of mdx Mice. Mol. Ther. 2008, 16, 1624–1629. [Google Scholar] [CrossRef]
- Betts, C.A.; Saleh, A.F.; Carr, C.A.; Hammond, S.M.; Coenen-Stass, A.M.L.; Godfrey, C.; McClorey, G.; Varela, M.A.; Roberts, T.C.; Clarke, K.; et al. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice. Sci. Rep. 2015, 5, 8986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jearawiriyapaisarn, N.; Moulton, H.M.; Sazani, P.; Kole, R.; Willis, M.S. Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers. Cardiovasc. Res. 2010, 85, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Echigoya, Y.; Nakamura, A.; Nagata, T.; Urasawa, N.; Lim, K.R.Q.; Trieu, N.; Panesar, D.; Kuraoka, M.; Moulton, H.M.; Saito, T.; et al. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 2017, 114, 4213–4218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, T.; Duddy, W.; Partridge, T. Optimizing exon skipping therapies for DMD. Acta Myol. 2007, 26, 179–184. [Google Scholar]
- Echigoya, Y.; Lim, K.R.Q.; Nakamura, A.; Yokota, T. Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J. Pers. Med. 2018, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, A.; Lucchetti-Miganeh, C.; Yaou, R.; Kaplan, J.-C.; Chelly, J.; Leturcq, F.; Barloy-Hubler, F.; Le Rumeur, E. Assessment of the structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database. Orphanet J. Rare Dis. 2012, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, O.; von Wegner, F.; Chamberlain, J.S.; Fink, R.H.A.; Rohrbach, P. L-Type Ca2+ Channel Function Is Linked to Dystrophin Expression in Mammalian Muscle. PLoS ONE 2008, 3, e1762. [Google Scholar] [CrossRef] [Green Version]
- Kaprielian, R.R.; Severs, N.J. Dystrophin and the Cardiomyocyte Membrane Cytoskeleton in the Healthy and Failing Heart. Heart Fail. Rev. 2000, 5, 221–238. [Google Scholar] [CrossRef]
- Sejersted, O.M. Calcium controls cardiac function—by all means! J. Physiol. 2011, 589, 2919–2920. [Google Scholar] [CrossRef] [PubMed]
- Masubuchi, N.; Shidoh, Y.; Kondo, S.; Takatoh, J.; Hanaoka, K. Subcellular Localization of Dystrophin Isoforms in Cardiomyocytes and Phenotypic Analysis of Dystrophin-deficient Mice Reveal Cardiac Myopathy is Predominantly Caused by a Deficiency in Full-length Dystrophin. Exp. Anim. 2013, 62, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegoraro, E.; Schimke, R.N.; Garcia, C.; Stern, H.; Cadaldini, M.; Angelini, C.; Barbosa, E.; Carroll, J.; Marks, W.A.; Neville, H.E.; et al. Genetic and biochemical normalization in female carriers of Duchenne muscular dystrophy: Evidence for failure of dystrophin production in dystrophin-competent myonuclei. Neurology 1995, 45, 677–690. [Google Scholar] [CrossRef] [PubMed]
Model | Type | Dystrophin % in Heart | Cardiac Phenotype | Ref/s |
---|---|---|---|---|
mdx/X | Mosaic | ≈50% | Normal, similar to wild-type at 3 or 21 mos | [30,65] |
mdx-XistΔhs | Mosaic | Varies | Correlates with dystrophin level; mice with >4% dystrophin have normal heart function; fibrosis increased at 6, 10 mos regardless of dystrophin amount | [68,69] |
mdx/utrn−/−/XistΔhs | Mosaic | Varies | Correlates with dystrophin level; generally worse than mdx-XistΔhs mice at similar ages, as well as a reduced lifespan for mice with lower dystrophin levels | [70] |
mdx/WT chimeras | Mosaic | Varies | Unexpectedly severe cardiac function with chimeras containing 30% or 50% mdx cells; mice with <5% mdx incorporation mostly wild-type | [71] |
mdx/mdx | Uniform | 0% | BL10 background: more severe hemodynamic function and EF at 22 mos than male mdx mice, as well as having increased heart mass; D2 background: lower heart mass than male mdx mice at 8 mos | [72,73,74] |
mdx3cv | Uniform | ≈3.3% | Anatomical and histopathological features no different from dystrophin-null mdx4cv mice; diastolic function improved, but not overall cardiac function compared to mdx4cv mice | [75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, K.R.Q.; Sheri, N.; Nguyen, Q.; Yokota, T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes 2020, 11, 765. https://doi.org/10.3390/genes11070765
Lim KRQ, Sheri N, Nguyen Q, Yokota T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes. 2020; 11(7):765. https://doi.org/10.3390/genes11070765
Chicago/Turabian StyleLim, Kenji Rowel Q., Narin Sheri, Quynh Nguyen, and Toshifumi Yokota. 2020. "Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies" Genes 11, no. 7: 765. https://doi.org/10.3390/genes11070765
APA StyleLim, K. R. Q., Sheri, N., Nguyen, Q., & Yokota, T. (2020). Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes, 11(7), 765. https://doi.org/10.3390/genes11070765