Genotype–Phenotype Correlation in Children: The Impact of FBN1 Variants on Pediatric Marfan Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort and Data Collection
2.2. Genetic Analysis
2.3. Variant Classification
2.4. Clinical Examination
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Children with MFS
3.2. Genotype–Phenotype Correlations
4. Discussion
4.1. Cardiovascular Genotype–Phenotype Correlations
4.2. Ocular Genotype–Phenotype Correlations
4.3. Skeleton, Dura, Lung, and Skin Genotype–Phenotype Correlations
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groth, K.A.; Hove, H.; Kyhl, K.; Folkestad, L.; Gaustadnes, M.; Vejlstrup, N.; Stochholm, K.; Østergaard, J.R.; Andersen, N.H.; Gravholt, C.H. Prevalence, incidence, and age at diagnosis in Marfan Syndrome. Orphanet J. Rare Dis. 2015, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, P.; Hanna, N.; Aubart, M.; Leheup, B.; Dupuis-Girod, S.; Naudion, S.; Lacombe, D.; Milleron, O.; Odent, S.; Faivre, L.; et al. Homozygous and compound heterozygous mutations in the FBN1 gene: Unexpected findings in molecular diagnosis of Marfan syndrome. J. Med. Genet. 2017, 54, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Beighton, P.; de Paepe, A.; Danks, D.; Finidori, G.; Gedde-Dahl, T.; Goodman, R.; Hall, J.G.; Hollister, D.W.; Horton, W.; McKusick, V.A.; et al. International nosology of heritable disorders of connective tissue, Berlin, 1986. Am. J. Med. Genet. 1988, 29, 581–594. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, A.; Devereux, R.B.; Dietz, H.C.; Hennekam, R.C.M.; Pye, R.E. Revised diagnostic criteria for the Marfan syndrome. Am. J. Med. Genet. 1996, 62, 417–426. [Google Scholar] [CrossRef]
- Dietz, H.C.; Cutting, C.R.; Pyeritz, R.E.; Maslen, C.L.; Sakai, L.Y.; Corson, G.M.; Puffenberger, E.G.; Hamosh, A.; Nanthakumar, E.J.; Curristin, S.M.; et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991, 352, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, J.L.; Walker, B.A.; Halpern, B.L.; Kuzma, J.W.; McKusick, V.A. Life Expectancy and Causes of Death in the Marfan Syndrome. N. Engl. J. Med. 1972, 286, 804–808. [Google Scholar] [CrossRef]
- Pyeritz, R.E. Marfan syndrome: Improved clinical history results in expanded natural history. Genet. Med. 2019, 21, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Rand-Hendriksen, S.; Tjeldhorn, L.; Lundby, R.; Semb, S.O.; Offstad, J.; Andersen, K.; Geiran, O.; Paus, B. Search for correlations betweenFBN1 genotype and complete Ghent phenotype in 44 unrelated Norwegian patients with Marfan syndrome. Am. J. Med. Genet. A 2007, 143, 1968–1977. [Google Scholar] [CrossRef]
- Faivre, L.; Masurel-Paulet, A.; Collod-Beroud, G.; Callewaert, B.L.; Child, A.H.; Stheneur, C.; Binquet, C.; Gautier, E.; Chevallier, B.; Huet, F.; et al. Clinical and molecular study of 320 children with Marfan syndrome and related type I fibrillinopathies in a series of 1009 probands with pathogenic FBN1 mutations. Pediatrics 2009, 123, 391–398. [Google Scholar] [CrossRef]
- Faivre, L.; Collod-Beroud, G.; Callewaert, B.; Child, A.; Binquet, C.; Gautier, E.; Loeys, B.L.; Arbustini, E.; Mayer, K.; Arslan-Kirchner, M.; et al. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation. Eur. J. Hum. Genet. 2009, 17, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.J.; Veldtman, G.R.; Ware, S.M. Genotype–phenotype correlations in Marfan syndrome. Heart 2017, 103, 1750–1752. [Google Scholar] [CrossRef] [PubMed]
- Lidal, I.B.; Bathen, T.; Johansen, H.; Velvin, G. A scoping review presenting a wide variety of research on paediatric and adolescent patients with Marfan syndrome. Acta Paediatr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Renner, S.; Schüler, H.; Alawi, M.; Kolbe, V.; Rybczynski, M.; Woitschach, R.; Sheikhzadeh, S.; Stark, V.C.; Olfe, J.; Roser, E.; et al. Next-generation sequencing of 32 genes associated with hereditary aortopathies and related disorders of connective tissue in a cohort of 199 patients. Genet. Med. 2019, 21, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Mühlstädt, K.; De Backer, J.; von Kodolitsch, Y.; Kutsche, K.; Muiño Mosquera, L.; Brickwedel, J.; Girdauskas, E.; Mir, T.S.; Mahlmann, A.; Tsilimparis, N.; et al. Case-matched comparison of cardiovascular outcome in Loeys-Dietz syndrome versus Marfan syndrome. J. Clin. Med. 2019, 8, 2079. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Desmet, F.-O.; Hamroun, D.; Lalande, M.; Collod-Béroud, G.; Claustres, M.; Béroud, C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37, e67. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; He, Y.; Li, Z.; Han, J.; Chen, J.; Nixon (Ian), J.V. Echocardiographic versus histologic findings in Marfan syndrome. Tex. Heart Inst. J. 2015, 42, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Freed, L.A.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Evans, J.C.; Fuller, D.L.; Lehman, B.; Levine, R.A. Mitral valve prolapse in the general population. J. Am. Coll. Cardiol. 2002, 40, 1298–1304. [Google Scholar] [CrossRef] [Green Version]
- Rommel, K.; Karck, M.; Haverich, A.; von Kodolitsch, Y.; Rybczynski, M.; Müller, G.; Singh, K.K.; Schmidtke, J.; Arslan-Kirchner, M. Identification of 29 novel and nine recurrent fibrillin-1 (FBN1) mutations and genotype-phenotype correlations in 76 patients with Marfan syndrome. Hum. Mutat. 2005, 26, 529–539. [Google Scholar] [CrossRef]
- Loeys, B. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch. Intern. Med. 2001, 161, 2447–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lu, C.; Wu, W.; Liu, Y.; Wang, R.; Si, N.; Meng, X.; Zhang, S.; Zhang, X. Application of next-generation sequencing to screen for pathogenic mutations in 123 unrelated Chinese patients with Marfan syndrome or a related disease. Sci. China Life Sci. 2019, 62, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.N.; Booms, P.; Katzke, S.; Ladewig, M.; Neumann, L.; Palz, M.; Pregla, R.; Tiecke, F.; Rosenberg, T. Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fibrillinopathies. Hum. Mutat. 2002, 20, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Hilhorst-Hofstee, Y.; Hamel, B.C.; Verheij, J.B.; Rijlaarsdam, M.E.; Mancini, G.M.; Cobben, J.M.; Giroth, C.; Ruivenkamp, C.A.; Hansson, K.B.; Timmermans, J.; et al. The clinical spectrum of complete FBN1 allele deletions. Eur. J. Hum. Genet. 2011, 19, 247–252. [Google Scholar] [CrossRef]
- Arbustini, E.; Grasso, M.; Ansaldi, S.; Malattia, C.; Pilotto, A.; Porcu, E.; Disabella, E.; Marziliano, N.; Pisani, A.; Lanzarini, L.; et al. Identification of sixty-two novel and twelve known FBN1 mutations in eighty-one unrelated probands with Marfan syndrome and other fibrillinopathies. Hum. Mutat. 2005, 26, 494. [Google Scholar] [CrossRef]
- Xu, S.; Li, L.; Fu, Y.; Wang, X.; Sun, H.; Wang, J.; Han, L.; Wu, Z.; Liu, Y.; Zhu, J.; et al. Increased frequency of FBN1 frameshift and nonsense mutations in Marfan syndrome patients with aortic dissection. Mol. Genet. Genom. Med. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Franken, R.; Teixido-Tura, G.; Brion, M.; Forteza, A.; Rodriguez-Palomares, J.; Gutierrez, L.; Garcia Dorado, D.; Pals, G.; Mulder, B.J.; Evangelista, A. Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome. Heart 2017, 103, 1795–1799. [Google Scholar] [CrossRef]
- Baudhuin, L.M.; Kotzer, K.E.; Lagerstedt, S.A. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events. Genet. Med. 2015, 17, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Muñoz, V.M.; Gómez-Doblas, J.J.; Porras-Martín, C.; Such-Martínez, M.; Crespo-Leiro, M.G.; Barriales-Villa, R.; de Teresa-Galván, E.; Jiménez-Navarro, M.; Cabrera-Bueno, F. The importance of genotype-phenotype correlation in the clinical management of Marfan syndrome. Orphanet J. Rare Dis. 2018, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Loeys, B.; De Backer, J.; Van Acker, P.; Wettinck, K.; Pals, G.; Nuytinck, L.; Coucke, P.; De Paepe, A. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum. Mutat. 2004, 24, 140–146. [Google Scholar] [CrossRef]
- Sakai, L.Y.; Keene, D.R.; Engvall, E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 1986, 103, 2499–2509. [Google Scholar] [CrossRef] [Green Version]
- Judge, D.P.; Biery, N.J.; Keene, D.R.; Geubtner, J.; Myers, L.; Huso, D.L.; Sakai, L.Y.; Dietz, H.C. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Investig. 2004, 114, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, N.; Inuzuka, R.; Maemura, S.; Morita, H.; Nawata, K.; Fujita, D.; Taniguchi, Y.; Yamauchi, H.; Yagi, H.; Kato, M.; et al. Impact of pathogenic FBN1 variant types on the progression of aortic disease in patients with Marfan syndrome. Circ. Genom. Precis. Med. 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Détaint, D.; Faivre, L.; Collod-Beroud, G.; Child, A.H.; Loeys, B.L.; Binquet, C.; Gautier, E.; Arbustini, E.; Mayer, K.; Arslan-Kirchner, M.; et al. Cardiovascular manifestations in men and women carrying a FBN1 mutation. Eur. Heart J. 2010, 31, 2223–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, G.H.; Kim, Y.-M.; Kang, E.; Kim, G.-H.; Seo, E.-J.; Lee, B.H.; Choi, J.-H.; Yoo, H.-W. The phenotypic heterogeneity of patients with Marfan-related disorders and their variant spectrums. Medicine (Baltimore) 2018, 97, e10767. [Google Scholar] [CrossRef]
- Gao, L.; Tian, T.; Zhou, X.; Fan, L.; Wang, R.; Wu, H. Detection of ten novel FBN1 mutations in Chinese patients with typical or incomplete Marfan syndrome and an overview of the genotype-phenotype correlations. Int. J. Cardiol. 2019, 293, 186–191. [Google Scholar] [CrossRef]
- Waldmuller, S.; Muller, M.; Warnecke, H.; Rees, W.; Schols, W.; Walterbusch, G.; Ennker, J.; Scheffold, T. Genetic testing in patients with aortic aneurysms/dissections: A novel genotype/phenotype correlation? Eur. J. Cardiothorac. Surg. 2007, 31, 970–975. [Google Scholar] [CrossRef]
- Yang, H.; Luo, M.; Chen, Q.; Fu, Y.; Zhang, J.; Qian, X.; Sun, X.; Fan, Y.; Zhou, Z.; Chang, Q. Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome. Clin. Chim. Acta 2016, 459, 30–35. [Google Scholar] [CrossRef]
- Franken, R.; Groenink, M.; de Waard, V.; Feenstra, H.M.A.; Scholte, A.J.; van den Berg, M.P.; Pals, G.; Zwinderman, A.H.; Timmermans, J.; Mulder, B.J.M. Genotype impacts survival in Marfan syndrome. Eur. Heart J. 2016, 37, 3285–3290. [Google Scholar] [CrossRef]
- Franken, R.; den Hartog, A.W.; Radonic, T.; Micha, D.; Maugeri, A.; van Dijk, F.S.; Meijers-Heijboer, H.E.; Timmermans, J.; Scholte, A.J.; van den Berg, M.P.; et al. Beneficial outcome of Losartan therapy depends on type of FBN1 mutation in Marfan syndrome. Circ. Cardiovasc. Genet. 2015, 8, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Schrijver, I.; Liu, W.; Brenn, T.; Furthmayr, H.; Francke, U. Cysteine substitutions in epidermal growth factor–like domains of fibrillin-1: Distinct effects on biochemical and clinical phenotypes. Am. J. Hum. Genet. 1999, 65, 1007–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudhuin, L.M.; Kotzer, K.E.; Lagerstedt, S.A. Decreased frequency of FBN1 missense variants in Ghent criteria-positive Marfan syndrome and characterization of novel FBN1 variants. J. Hum. Genet. 2015, 60, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Faivre, L.; Collod-Beroud, G.; Loeys, B.L.; Child, A.; Binquet, C.; Gautier, E.; Callewaert, B.; Arbustini, E.; Mayer, K.; Arslan-Kirchner, M.; et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: An international study. Am. J. Hum. Genet. 2007, 81, 454–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haine, E.; Salles, J.-P.; Khau Van Kien, P.; Conte-Auriol, F.; Gennero, I.; Plancke, A.; Julia, S.; Dulac, Y.; Tauber, M.; Edouard, T. Muscle and bone impairment in children with Marfan syndrome: Correlation with age and FBN1 genotype. J. Bone Miner. Res. 2015, 30, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Comeglio, P.; Johnson, P.; Arno, G.; Brice, G.; Evans, A.; Aragon-Martin, J.; Silva, F.P.; Da Kiotsekoglou, A.; Child, A. The importance of mutation detection in Marfan syndrome and Marfan-related disorders: Report of 193FBN1 mutations. Hum. Mutat. 2007, 28, 928. [Google Scholar] [CrossRef]
- Schrijver, I.; Liu, W.; Odom, R.; Brenn, T.; Oefner, P.; Furthmayr, H.; Francke, U. Premature termination mutations in FBN1: Distinct effects on differential allelic expression and on protein and clinical phenotypes. Am. J. Hum. Genet. 2002, 71, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Stheneur, C.; Faivre, L.; Collod-Béroud, G.; Gautier, E.; Binquet, C.; Bonithon-Kopp, C.; Claustres, M.; Child, A.H.; Arbustini, E.; Adès, L.C.; et al. Prognosis factors in probands with an FBN1 mutation diagnosed before the age of 1 year. Pediatr. Res. 2011, 69, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Pees, C.; Michel-Behnke, I.; Hagl, M.; Laccone, F. Detection of 15 novel mutations in 52 children from 40 families with the Marfan or Loeys-Dietz syndrome and phenotype-genotype correlations: Marfan or Loeys-Dietz syndrome and phenotype-genotype correlations. Clin. Genet. 2014, 86, 552–557. [Google Scholar] [CrossRef]
- Aubart, M.; Gazal, S.; Arnaud, P.; Benarroch, L.; Gross, M.-S.; Buratti, J.; Boland, A.; Meyer, V.; Zouali, H.; Hanna, N.; et al. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability. Eur. J. Hum. Genet. 2018, 26, 1759–1772. [Google Scholar] [CrossRef] [Green Version]
- Sakai, L.Y.; Keene, D.R.; Renard, M.; De Backer, J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016, 591, 279–291. [Google Scholar] [CrossRef]
- Neptune, E.R.; Frischmeyer, P.A.; Arking, D.E.; Myers, L.; Bunton, T.E.; Gayraud, B.; Ramirez, F.; Sakai, L.Y.; Dietz, H.C. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 2003, 33, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, L.; Aubart, M.; Gross, M.-S.; Jacob, M.-P.; Arnaud, P.; Hanna, N.; Jondeau, G.; Boileau, C. Marfan syndrome variability: Investigation of the roles of sarcolipin and calcium as potential transregulator of FBN1 expression. Genes 2018, 9, 421. [Google Scholar] [CrossRef] [Green Version]
- Aubart, M.; Gross, M.-S.; Hanna, N.; Zabot, M.-T.; Sznajder, M.; Detaint, D.; Gouya, L.; Jondeau, G.; Boileau, C.; Stheneur, C. The clinical presentation of Marfan syndrome is modulated by expression of wild-type FBN1 allele. Hum. Mol. Genet. 2015, 24, 2764–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, S. Allelic variation in normal human FBN1 expression in a family with Marfan syndrome: A potential modifier of phenotype? Hum. Mol. Genet. 2003, 12, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
Variables | All patients (n = 105) | Age of onset (years) |
---|---|---|
Age at first consultation (years) | 7.0 ± 5.4 | |
Sex | 55 males (52.4%), 50 females (47.6%) | |
Age at genetic diagnosis (years) | 7.8 ± 5.4 | |
Medications | 64 (61.0%) | 8.4 ± 5.0 |
First-grade family history positivity | 70 (66.7%) | |
Cardiovascular features | ||
Sinus of Valsalva dilatation | 60 (57.1%) | 7.9 ± 5.6 |
Mitral valve prolapses | 58 (55.2%) | 8.6 ± 5.3 |
Tricuspid valve prolapses | 70 (67.3%) | 7.6 ± 5.4 |
Pulmonary artery dilatation | 10 (9.6%) | 7.8 ± 7.0 |
Surgical aortic root replacement | 6 (5.7%) | 11.7 ± 6.7 |
Skeletal features | ||
Dural ectasia | 47 (46.5%) | 11.7 ± 4.4 |
High arched palate | 61 (58.1%) | 9.3 ± 5.0 |
Facial dysmorphism | 33 (31.4%) | 6.1 ± 5.0 |
Arm-span-to-height ratio > 1.05 | 33 (31.4%) | 11.0 ± 4.5 |
Pectus excavatum | 19 (18.1%) | 8.5 ± 4.9 |
Pectus carinatum | 24 (22.9%) | 10.6 ± 4.4 |
Scoliosis | 38 (36.2%) | 10.0 ± 4.8 |
Wrist and thumb sign | 17 (16.2%) | 10.9 ± 4.4 |
Foot deformity | 59 (56.2%) | 7.9 ± 4.9 |
Reduced elbow extension | 12 (11.4%) | 10.9 ± 6.1 |
Ocular features | ||
Ectopia lentis | 29 (27.6%) | 7.9 ± 5.5 |
Myopia | 22 (21.2%) | 6.3 ± 4.5 |
Other features | ||
Skin striae | 24 (22.9%) | 13.5 ± 3.1 |
Hernia | 8 (7.6%) | 7.2 ± 3.5 |
Pneumothorax | 5 (4.8%) | 15.0 ± 0.6 |
Systemic score ≥ 7 | 38 (36.2%) | 11.1 ± 5.0 |
Prevalence | Age of Onset | |||||
---|---|---|---|---|---|---|
Missense/in-Frame | Splicing | p-Value | Missense/in-Frame | Splicing | p-Value | |
Pectus excavatum | 6/62 (9.7%) | 6/14 (42.9%) | 0.0067 | |||
Hernia | 5.3 ± 1.4 | 12.9 ± 0.0 | 0.0416 | |||
Missense/in-frame | Nonsense/frameshift | p-value | Missense/in-frame | Nonsense/frameshift | p-value | |
PA dilatation | 4.3 ± 5.1 | 15.4 ± 4.1 | 0.0334 | |||
Dural ectasia | 21/61 (34.4%) | 19/28 (67.8%) | 0.0054 | |||
Ectopia lentis | 23/62 (37.1%) | 2/29 (6.9%) | 0.0023 | |||
Cys-missense | Missense cysteine not involved | p-value | Cys-missense | Missense cysteine not involved | p-value | |
SV dilatation | 23/34 (67.6%) | 9/24 (37.5%) | 0.0327 | |||
TVP | 25/34 (73.5%) | 10/24 (41.7%) | 0.0281 | |||
Medication | 24/34 (70.6%) | 7/24 (29.2%) | 0.003 | |||
Myopia | 3.7± 2.2 | 9.6 ± 4.8 | 0.0245 |
Authors | YOP | Results |
---|---|---|
Loeys et al. | 2001 | Subanalysis, 38 children, no significant findings concerning phenotype (especially no findings on cysteine involvement and EL, cardiovasc.) |
Arbustini et al. | 2005 | Subanalysis, 30 children, more EL in cys-missense vs. non-cys-missense, some trends, not significant |
Faivre et al. | 2009 | 302 children, comparison of neonatal MFS vs. other variants |
Faivre et al. | 2009 | FBN1 variant analysis in neonatal MFS |
Stheneur et al. [47] | 2011 | Neonatal MFS |
Pees et al. | 2014 | 49 children, exons 1–21: 80% ectopia lentis exons 23–32: higher probability of aortic root dilatation |
Haine et al. | 2015 | 48 patients (5.3–25.2 years). More musculoskeletal involvement in PTC than in-frame |
Seo et al. | 2018 | Subanalysis, 12 children, no clinical difference in cys-missense vs. non-cys-missense |
Stark et al. | 2020 | 105 children More SV-Dil, TVP, medication in cys-missense than in non-cys-missense Earlier PA-Dil in missense/in-frame than in nonsense/frameshift More EL in missense than in nonsense/frameshift Earlier myopia in cys-missense than in non-cys-missense More pectus excavatum in splicing than in missense/in-frame Earlier hernias in missense/in-frame than in splicing More dural ectasia in nonsense/frameshift than in missense |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark, V.C.; Hensen, F.; Kutsche, K.; Kortüm, F.; Olfe, J.; Wiegand, P.; von Kodolitsch, Y.; Kozlik-Feldmann, R.; Müller, G.C.; Mir, T.S. Genotype–Phenotype Correlation in Children: The Impact of FBN1 Variants on Pediatric Marfan Care. Genes 2020, 11, 799. https://doi.org/10.3390/genes11070799
Stark VC, Hensen F, Kutsche K, Kortüm F, Olfe J, Wiegand P, von Kodolitsch Y, Kozlik-Feldmann R, Müller GC, Mir TS. Genotype–Phenotype Correlation in Children: The Impact of FBN1 Variants on Pediatric Marfan Care. Genes. 2020; 11(7):799. https://doi.org/10.3390/genes11070799
Chicago/Turabian StyleStark, Veronika C., Flemming Hensen, Kerstin Kutsche, Fanny Kortüm, Jakob Olfe, Peter Wiegand, Yskert von Kodolitsch, Rainer Kozlik-Feldmann, Götz C. Müller, and Thomas S. Mir. 2020. "Genotype–Phenotype Correlation in Children: The Impact of FBN1 Variants on Pediatric Marfan Care" Genes 11, no. 7: 799. https://doi.org/10.3390/genes11070799
APA StyleStark, V. C., Hensen, F., Kutsche, K., Kortüm, F., Olfe, J., Wiegand, P., von Kodolitsch, Y., Kozlik-Feldmann, R., Müller, G. C., & Mir, T. S. (2020). Genotype–Phenotype Correlation in Children: The Impact of FBN1 Variants on Pediatric Marfan Care. Genes, 11(7), 799. https://doi.org/10.3390/genes11070799