Determinants of Disease Penetrance in PRPF31-Associated Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Tissues
2.2. Clinical Assessment
2.3. Genetic Diagnosis and Pathogenicity Assessment
2.4. CNOT3 Polymorphism and Copy Number of MSR1
2.5. Dermal Fibroblast Culture
2.6. Cadaveric Adult Human Retina
2.7. Induced Pluripotent Stem Cells
2.8. Retinal Organoid Differentiation
2.9. RPE Differentiation
2.10. Quantitative PCR
2.11. Immunostaining
2.12. Scanning Electron Microscopy
2.13. Cilia Length Analysis
3. Results
3.1. Demographics of RP11 Patients
3.2. The CNOT3 rs4806718 Polymorphism Does Not Correlate with RP11 Disease Penetrance
3.3. The 4-Copy MSR1 Repeat Is Associated with RP11 Disease Penetrance
3.4. PRPF31 and CNOT3 Expression Is Reduced in RP11 Patient Fibroblasts
3.5. PRPF31 mRNA Expression Is Reduced with Age in Cadaveric Adult Retina
3.6. PRPF31 mRNA Expression Is Reduced in RP11 Retinal Organoids
3.7. Expression of Spliceosome Genes Is Reduced in RP11 RetinalOorganoids
3.8. PRPF31 and CNOT3 Expression Is Reduced in RP11 iPSC-Derived RPE
3.9. Microvilli Densities Are Reduced in RP11 iPSC-Derived RPE
3.10. Primary Cilia Length Is Reduced in RP11 iPSC-Derived RPE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heath Jeffery, R.C.; Mukhtar, S.A.; McAllister, I.L.; Morgan, W.H.; Mackey, D.A.; Chen, F.K. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021, 42, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Liew, G.; Michaelides, M.; Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 2014, 4, e004015. [Google Scholar] [CrossRef] [PubMed]
- De Roach, J.N.; McLaren, T.L.; Thompson, J.A.; Hoffmann, L.; Urwin, I.R.; McLenachan, S.; Mackey, D.A.; Chen, F.K.; Lamey, T.M. The Australian Inherited Retinal Disease Registry and DNA Bank. Clin. Exp. Ophthalmol. 2017, 45, 61–62. [Google Scholar]
- Audo, I.; Bujakowska, K.; Mohand-Saïd, S.; Lancelot, M.E.; Moskova-Doumanova, V.; Waseem, N.H.; Antonio, A.; Sahel, J.A.; Bhattacharya, S.S.; Zeitz, C. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports. BMC Med. Genet. 2010, 11, 145. [Google Scholar] [CrossRef]
- Waseem, N.H.; Vaclavik, V.; Webster, A.; Jenkins, S.A.; Bird, A.C.; Bhattacharya, S.S. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Sui, R.; Liang, X.; Li, H.; Jiang, R.; Dong, F. Novel PRPF31 mutations associated with Chinese autosomal dominant retinitis pigmentosa patients. Mol. Vis. 2012, 18, 3021. [Google Scholar]
- Hafler, B.P.; Comander, J.; Weigel DiFranco, C.; Place, E.M.; Pierce, E.A. Course of Ocular Function in PRPF31 Retinitis Pigmentosa. Semin. Ophthalmol. 2016, 31, 49–52. [Google Scholar] [CrossRef]
- Kiser, K.; Webb-Jones, K.D.; Bowne, S.J.; Sullivan, L.S.; Daiger, S.P.; Birch, D.G. Time Course of Disease Progression of PRPF31-mediated Retinitis Pigmentosa. Am. J. Ophthalmol. 2019, 200, 76–84. [Google Scholar] [CrossRef]
- Liu, S.; Li, P.; Dybkov, O.; Nottrott, S.; Hartmuth, K.; Lührmann, R.; Carlomagno, T.; Wahl, M.C. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science 2007, 316, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Rauhut, R.; Vornlocher, H.P.; Lührmann, R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA 2006, 12, 1418–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makarova, O.V.; Makarov, E.M.; Liu, S.; Vornlocher, H.P.; Lührmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 2002, 21, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
- Weidenhammer, E.M.; Ruiz-Noriega, M.; Woolford, J.L., Jr. Prp31p promotes the association of the U4/U6 x U5 tri-snRNP with prespliceosomes to form spliceosomes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1997, 17, 3580–3588. [Google Scholar] [CrossRef] [Green Version]
- Wheway, G.; Douglas, A.; Baralle, D.; Guillot, E. Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy. Exp. Eye Res. 2020, 192, 107950. [Google Scholar] [CrossRef] [PubMed]
- Rio Frio, T.; Civic, N.; Ransijn, A.; Beckmann, J.S.; Rivolta, C. Two trans-acting eQTLs modulate the penetrance of PRPF31 mutations. Hum. Mol. Genet. 2008, 17, 3154–3165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivolta, C.; McGee, T.L.; Rio Frio, T.; Jensen, R.V.; Berson, E.L.; Dryja, T.P. Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum. Mutat. 2006, 27, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Vithana, E.N.; Abu-Safieh, L.; Pelosini, L.; Winchester, E.; Hornan, D.; Bird, A.C.; Hunt, D.M.; Bustin, S.A.; Bhattacharya, S.S. Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: A molecular clue for incomplete penetrance? Investig. Ophthalmol. Vis. Sci. 2003, 44, 4204–4209. [Google Scholar] [CrossRef]
- McGee, T.L.; Devoto, M.; Ott, J.; Berson, E.L.; Dryja, T.P. Evidence that the penetrance of mutations at the RP11 locus causing dominant retinitis pigmentosa is influenced by a gene linked to the homologous RP11 allele. Am. J. Hum. Genet. 1997, 61, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venturini, G.; Rose, A.M.; Shah, A.Z.; Bhattacharya, S.S.; Rivolta, C. CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet. 2012, 8, e1003040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boland, A.; Chen, Y.; Raisch, T.; Jonas, S.; Kuzuoglu-Ozturk, D.; Wohlbold, L.; Weichenrieder, O.; Izaurralde, E. Structure and assembly of the NOT module of the human CCR4-NOT complex. Nat. Struct. Mol. Biol. 2013, 20, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.M.; Shah, A.Z.; Venturini, G.; Krishna, A.; Chakravarti, A.; Rivolta, C.; Bhattacharya, S.S. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa. Sci. Rep. 2016, 6, 19450. [Google Scholar] [CrossRef]
- Buskin, A.; Zhu, L.; Chichagova, V.; Basu, B.; Mozaffari-Jovin, S.; Dolan, D.; Droop, A.; Collin, J.; Bronstein, R.; Mehrotra, S.; et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 2018, 9, 4234. [Google Scholar] [CrossRef]
- Azizzadeh Pormehr, L.; Ahmadian, S.; Daftarian, N.; Mousavi, S.A.; Shafiezadeh, M. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur. J. Hum. Genet. 2020, 28, 491–498. [Google Scholar] [CrossRef]
- Roshandel, D.; Thompson, J.A.; Charng, J.; Zhang, D.; Chelva, E.; Arunachalam, S.; Attia, M.S.; Lamey, T.M.; McLaren, T.L.; De Roach, J.N.; et al. Exploring microperimetry and autofluorescence endpoints for monitoring disease progression in PRPF31-associated retinopathy. Ophthalmic Genet. 2021, 42, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Roshandel, D.; Thompson, J.A.; Heath Jeffery, R.C.; Zhang, D.; Lamey, T.M.; McLaren, T.L.; De Roach, J.N.; McLenachan, S.; Mackey, D.A.; Chen, F.K. Clinical Evidence for the Importance of the Wild-Type PRPF31 Allele in the Phenotypic Expression of RP11. Genes 2021, 12, 915. [Google Scholar] [CrossRef]
- De Roach, J.N.; McLaren, T.L.; Paterson, R.L.; O’Brien, E.C.; Hoffmann, L.; Mackey, D.A.; Hewitt, A.W.; Lamey, T.M. Establishment and Evolution of the Australian Inherited Retinal Disease Register and DNA Bank. Clin. Exp. Ophthalmol. 2013, 41, 476–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Dunnen, J.T.; Antonarakis, S.E. Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion. Hum. Mutat. 2000, 15, 7–12. [Google Scholar] [CrossRef]
- Thompson, J.A.; De Roach, J.N.; McLaren, T.L.; Montgomery, H.E.; Hoffmann, L.H.; Campbell, I.R.; Chen, F.K.; Mackey, D.A.; Lamey, T.M. The genetic profile of Leber congenital amaurosis in an Australian cohort. Mol. Genet. Genom. Med. 2017, 5, 652–667. [Google Scholar] [CrossRef]
- Richards, C.S.; Bale, S.; Bellissimo, D.B.; Das, S.; Grody, W.W.; Hegde, M.R.; Lyon, E.; Ward, B.E. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet. Med. 2008, 10, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvik, G.P.; Browning, B.L. Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants. Am. J. Hum. Genet. 2016, 98, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- McLenachan, S.; Zhang, D.; Zhang, X.; Chen, S.C.; Lamey, T.; Thompson, J.A.; McLaren, T.; De Roach, J.N.; Fletcher, S.; Chen, F.K. Generation of two induced pluripotent stem cell lines from a patient with dominant PRPF31 mutation and a related non-penetrant carrier. Stem Cell Res. 2019, 34, 101357. [Google Scholar] [CrossRef]
- Fernandez-Godino, R.; Garland, D.L.; Pierce, E.A. Isolation, culture and characterization of primary mouse RPE cells. Nat. Protoc. 2016, 11, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Tanackovic, G.; Ransijn, A.; Thibault, P.; Abou Elela, S.; Klinck, R.; Berson, E.L.; Chabot, B.; Rivolta, C. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum. Mol. Genet. 2011, 20, 2116–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, M.H.; Grant, G.R.; White, J.A.; Sousa, M.E.; Consugar, M.B.; Pierce, E.A. Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genom. 2013, 14, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, M.H.; Lew, D.S.; Sousa, M.E.; Bujakowska, K.; Chatagnon, J.; Bhattacharya, S.S.; Pierce, E.A.; Nandrot, E.F. Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am. J. Pathol. 2014, 184, 2641–2652. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.M.; Shah, A.Z.; Venturini, G.; Rivolta, C.; Rose, G.E.; Bhattacharya, S.S. Dominant PRPF31 mutations are hypostatic to a recessive CNOT3 polymorphism in retinitis pigmentosa: A novel phenomenon of “linked trans-acting epistasis”. Ann. Hum. Genet. 2014, 78, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Collart, M.A. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 2016, 7, 438–454. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.E.; Reese, J.C. Ccr4-Not complex: The control freak of eukaryotic cells. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 315–333. [Google Scholar] [CrossRef] [Green Version]
- De Keersmaecker, K.; Atak, Z.K.; Li, N.; Vicente, C.; Patchett, S.; Girardi, T.; Gianfelici, V.; Geerdens, E.; Clappier, E.; Porcu, M.; et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 2013, 45, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Cejas, P.; Cavazza, A.; Yandava, C.N.; Moreno, V.; Horst, D.; Moreno-Rubio, J.; Burgos, E.; Mendiola, M.; Taing, L.; Goel, A.; et al. Transcriptional Regulator CNOT3 Defines an Aggressive Colorectal Cancer Subtype. Cancer Res. 2017, 77, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Shirai, Y.T.; Mizutani, A.; Nishijima, S.; Horie, M.; Kikuguchi, C.; Elisseeva, O.; Yamamoto, T. CNOT3 targets negative cell cycle regulators in non-small cell lung cancer development. Oncogene 2019, 38, 2580–2594. [Google Scholar] [CrossRef]
- Li, X.; Morita, M.; Kikuguchi, C.; Takahashi, A.; Suzuki, T.; Yamamoto, T. Adipocyte-specific disruption of mouse Cnot3 causes lipodystrophy. FEBS Lett. 2017, 591, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Gil, A.; Ritter, O.; Saul, V.V.; Wilhelm, J.; Yang, C.Y.; Grosschedl, R.; Imai, Y.; Kuba, K.; Kracht, M.; Schmitz, M.L. The CCR4-NOT complex contributes to repression of Major Histocompatibility Complex class II transcription. Sci. Rep. 2017, 7, 3547. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.M.; Bhattacharya, S.S. Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Clin. Genet. 2016, 90, 118–126. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Group/Age/Sex | PRPF31 Variant (NM_015629.3) | PRPF31 MSR1 | CNOT3 rs4806718 |
---|---|---|---|---|
Family 1 | ||||
1846 | NPC 11 M | c.1205C>A | 3/4 | T/T |
1439 | RP11 16 M | c.1205C>A | 3/3 | T/T |
1479 | RP11 18 M | c.1205C>A | 3/3 | C/T |
1486 | RP11 19 M | c.1205C>A | 3/3 | C/T |
1582 | RP11 22 F | c.1205C>A | 3/3 | C/T |
1093 | RP11 28 M * | c.1205C>A | 3/3 | C/T |
1341 | RP11 31 M | c.1205C>A | 3/3 | C/T |
1576 | RP11 35 F | c.1205C>A | 3/3 | C/C |
1299 | RP11 35 F | c.1205C>A | 3/3 | C/T |
1485 | RP11 38 M | c.1205C>A | 3/3 | C/T |
1063 | RP11 51 M | c.1205C>A | 3/3 | T/T |
1374 | NPC 54 F * | c.1205C>A | 3/4 | T/T |
1682 | RP11 59 M | c.1205C>A | 3/3 | T/T |
Family 2 | ||||
1332 | RP11 29 F | c.267del | 3/3 | C/C |
1506 | RP11 34 F | c.267del | 3/3 | C/T |
1651 | NPC 40 M | c.267del | 3/3 | C/T |
1150 | RP11 51 F * | c.267del | 3/3 | C/C |
1477 | RP11 61 M | c.267del | 3/3 | C/T |
1313 | RP11 85 F | c.267del | 3/3 | C/C |
Family 3 | ||||
1681 | RP11 16 F | c.772_773delins16 (ins CAACATGCAACATCAT) | 3/3 | C/T |
1757 | RP11 18 M | c.772_773delins16 (ins CAACATGCAACATCAT) | 3/3 | C/T |
1816 | NPC 56 M | c.772_773delins16 (ins CAACATGCAACATCAT) | 3/4 | C/T |
Family 4 | ||||
5739 | NPC 60 M | Exon 2–3 deletion c.(?_1)_(238+1_239-1)del | 3/3 | C/T |
5854 | RP11 62 M | Exon 2–3 deletion c.(?_1)_(238+1_239-1)del | 3/3 | C/T |
1705 | RP11 62 F | Exon 2–3 deletion c.(?_1)_(238+1_239-1)del | 3/3 | C/T |
Families 5–8 | ||||
1175 | RP11 36 M | Exon 9–14 deletion c.(855+1_?)del | 3/3 | C/T |
1164 | RP11 61 F * | Exon 2–8 deletion c.(−9+1_−8-1)_(855+1_856-1)del | 3/3 | C/T |
1473 | RP11 69 M | c.−9+1G>T | 3/3 | C/T |
1708 | RP11 70 F | c.527+1G>T | 3/3 | T/T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLenachan, S.; Zhang, D.; Grainok, J.; Zhang, X.; Huang, Z.; Chen, S.-C.; Zaw, K.; Lima, A.; Jennings, L.; Roshandel, D.; et al. Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. Genes 2021, 12, 1542. https://doi.org/10.3390/genes12101542
McLenachan S, Zhang D, Grainok J, Zhang X, Huang Z, Chen S-C, Zaw K, Lima A, Jennings L, Roshandel D, et al. Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. Genes. 2021; 12(10):1542. https://doi.org/10.3390/genes12101542
Chicago/Turabian StyleMcLenachan, Samuel, Dan Zhang, Janya Grainok, Xiao Zhang, Zhiqin Huang, Shang-Chih Chen, Khine Zaw, Alanis Lima, Luke Jennings, Danial Roshandel, and et al. 2021. "Determinants of Disease Penetrance in PRPF31-Associated Retinopathy" Genes 12, no. 10: 1542. https://doi.org/10.3390/genes12101542
APA StyleMcLenachan, S., Zhang, D., Grainok, J., Zhang, X., Huang, Z., Chen, S. -C., Zaw, K., Lima, A., Jennings, L., Roshandel, D., Moon, S. Y., Heath Jeffery, R. C., Attia, M. S., Thompson, J. A., Lamey, T. M., McLaren, T. L., De Roach, J., Fletcher, S., & Chen, F. K. (2021). Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. Genes, 12(10), 1542. https://doi.org/10.3390/genes12101542