Cytokinin Signaling and De Novo Shoot Organogenesis
Abstract
:1. Introduction
2. De Novo Shoot Organogenesis
- cell dedifferentiation, as a consequence of the acquisition of morphogenic competence;
- response to exogenous plant hormones, understood as a determination of competent cells to form a shoot (induction);
- phytohormone-independent organ morphogenesis [16].
3. Cytokinin Signaling/Regulation
3.1. Cytokinin Receptors
3.2. Molecular Background of CK Signal Transduction
3.3. Regulation of Cytokinin-Related Genes in Shoot Development
Epigenetic Reprogramming in Cytokinin Signaling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fehér, A. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Front. Plant Sci. 2019, 10, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamborg, O.; Phillips, G.C. (Eds.) Plant Cell, Tissue and Organ Culture: Fundamental Methods; Springer Science & Business Media: Berlin, Germany, 1995. [Google Scholar]
- Ikeuchi, M.; Favero, D.S.; Sakamoto, Y.; Iwase, A.; Coleman, D.; Rymen, B.; Sugimoto, K. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 2019, 70, 377–406. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.O.; Skoog, F.; Von Saltza, M.H.; Strong, F. Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 1955, 77, 1392. [Google Scholar] [CrossRef]
- Amasino, R. 1955: Kinetin arrives. The 50th anniversary of a new plant hormone. Plant Physiol. 2005, 138, 1177–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raines, T.; Blakley, I.C.; Tsai1, Y.-C.; Worthen, J.M.; Franco-Zorrilla, J.M.; Solano, R.; Schaller, G.E.; Loraine, A.E.; Kieber, J.J. Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biol. 2016, 16, 260. [Google Scholar] [CrossRef] [Green Version]
- Kieber, J.J.; Schaller, G.E. Cytokinin signaling in plant development. Development 2018, 145, dev149344. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.S.; Mekureyaw, M.F.; Pandey, C.; Roitsch, T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci. 2020, 10, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamada-Nobusada, T.; Sakakibara, H. Molecular basis for cytokinin biosynthesis. Phytochemistry 2009, 70, 444–449. [Google Scholar] [CrossRef]
- Cortleven, A.; Leuendorf, J.E.; Frank, M.; Pezzetta, D.; Bolt, S.; Schmülling, T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019, 42, 998–1018. [Google Scholar] [CrossRef]
- Skoog, F.; Miller, C.O. Chemical regulation of growth and organ formation in plant tissues cultured In Vitro. Symp. Soc. Exp. Biol. 1957, 54, 118–130. [Google Scholar]
- Sugimoto, K.; Jiao, Y.L.; Meyerowitz, E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 2010, 18, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atta, R.; Laurens, L.; Boucheron-Dubuisson, E.; Guivarc’h, A.; Carnero, E.; Giraudat-Pautot, V.; Rech, P.; Chriqui, D. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown In Vitro. Plant J. 2009, 57, 626–644. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Bae, S.; Seo, P.J. De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 2020, 71, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Duclercq, J.; Sangwan-Norreel, B.; Catterou, M.; Sangwan, R.S. De novo shoot organogenesis: From art to science. Trends Plant Sci. 2011, 16, 597–606. [Google Scholar] [CrossRef]
- Brenner, W.G.; Ramireddy, E.; Heyl, A.; Schmülling, T. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012, 3, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Brenner, W.G.; Romanov, G.A.; Köllmer, I.; Bürkle, L.; Schmülling, T. Immediate-early and delayed cytokine in response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 2005, 44, 314–333. [Google Scholar] [CrossRef]
- Che, P.; Lall, S.; Nettleton, D.; Howell, S.H. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol. 2006, 141, 620–637. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Dharmawardhana, P.; Mockler, T.C.; Strauss, S.H. Genome scale transcriptome analysis of shoot organogenesis in Populs. BMC Plant Biol. 2009, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Su, N.; He, K.; Jiao, Y.; Chen, C.; Zhou, J.; Li, L.; Bai, S.; Li, X.; Deng, X.W. Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol. Biol. 2007, 63, 337–349. [Google Scholar] [CrossRef]
- Lomin, S.N.; Yonekura-Sakakibara, K.; Romanov, G.A.; Sakakibarajk, H. Ligand-binding properties and subcellular localization of maize cytokinin receptors. J. Exp. Bot. 2011, 62, 5149–5159. [Google Scholar] [CrossRef] [Green Version]
- Wulfetange, K.; Lomin, S.N.; Romanov, G.A.; Stolz, A.; Heyl, A.; Schmülling, T. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol. 2011, 156, 1808–1818. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Higuchi, M.; Hashimoto, Y.; Seki, M.; Kobayashi, M.; Kato, T.; Tabata, S.; Shinozaki, K.; Kakimoto, T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nat. 2001, 409, 1060–1063. [Google Scholar] [CrossRef]
- Lomin, S.N.; Krivosheev, D.M.; Steklov, M.Y.; Arkhipov, D.V.; Osolodkin, D.I.; Schmülling, T.; Romanov, G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015, 66, 1851–1863. [Google Scholar] [CrossRef] [Green Version]
- Lomin, S.N.; Krivosheev, D.M.; Steklov, M.Y.; Osolodkin, D.I.; Romanov, G.A. Receptor properties and features of cytokinin signaling. Acta Naturae 2012, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Romanov, G.A. How do cytokinins affect the cell? Russ. J. Plant Physiol. 2009, 56, 268–290. [Google Scholar] [CrossRef]
- Hothorn, M.; Dabi, T.; Chory, J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat. Chem. Biol. 2011, 7, 766–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, C.; Ohashi, Y.; Sato, S.; Kato, T.; Tabata, S.; Ueguchi, C. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 2004, 16, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Riefler, M.; Novak, O.; Strnad, M.; Schmülling, T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 2006, 18, 40–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieber, J.J.; Schaller, G.E. Cytokinins. In The Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2014; p. 12. [Google Scholar]
- Tan, S.; Debellé, F.; Gamas, P.; Frugier, F.; Brault, M. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes. BMC Genomics 2019, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mira-Rodado, V. New insights into multistep-phosphorelay (MSP)/two-component system (TCS) regulation: Are plants and bacteria that different? Plants 2019, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Schaller, G.E.; Shiu, S.H.; Armitage, J.P. Two-component systems and their co-option for eukaryotic signal transduction. Curr. Biol. 2011, 21, R320–R330. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Rashotte, A.M. Advances in upstream players of cytokinin phosphorelay: Receptors and histidine phosphotransfer proteins. Plant Cell Rep. 2012, 31, 789–799. [Google Scholar] [CrossRef]
- Pils, B.; Heyl, A. Unraveling the evolution of cytokinin signaling. Plant Physiol. 2009, 151, 782–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Q.M.; Jiang, H.W.; Qi, X.P.; Yu, J.; Wu, P. A CHASE domain containing protein kinase OsCRL4, represents a new AtCRE1-like gene family in rice. J. Zhejiang Univ. Sci. 2004, 5, 629–633. [Google Scholar] [CrossRef] [PubMed]
- To, J.P.; Deruère, J.; Maxwell, B.B.; Morris, V.F.; Hutchison, C.E.; Schaller, G.E.; Kieber, J.J. Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 2007, 19, 3901–3914. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.Y.; Cho, C.; Kim, J. Inducible expression of Arabidopsis response regulator 22 (ARR22), a type-C ARR, in transgenic Arabidopsis enhances drought and freezing tolerance. PLoS ONE 2013, 8, e79248. [Google Scholar] [CrossRef] [PubMed]
- Veerabagu, M.; Elgass, K.; Kirchler, T.; Huppenberger, P.; Harter, K.; Chaban, C.; Mira-Rodado, V. The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. Plant J. 2012, 725, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.; Liu, Z.; Yu, X.; Li, Z. The Interaction network and signaling specificity of two-component system in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 4898. [Google Scholar] [CrossRef]
- Adibi, M.; Yoshida, S.; Weijers, D.; Fleck, C. Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS ONE 2016, 11, e0147830. [Google Scholar] [CrossRef]
- Klawe, F.Z.; Stiehl, T.; Bastian, P.; Gaillochet, C.; Lohmann, J.U.; Marciniak-Czochra, A. Mathematical modeling of plant cell fate transitions controlled by hormonal signals. PLoS Comput. Biol. 2020, 16, e1007523. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Z.; Qiao, M.; Li, J.; Li, S.; Xiang, F. ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression. J. Integr. Plant Biol. 2017, 59, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.Q.; Lian, H.; Zhou, C.M.; Xu, L.; Jiao, Y.; Wang, J.W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 2017, 29, 1073–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, R.K.; Perales, M.; Gruel, J.; Girke, T.; Jönsson, H.; Reddy, G.V. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 2011, 25, 2025–2030. [Google Scholar] [CrossRef] [Green Version]
- Leibfried, A.; To, J.P.C.; Busch, W.; Stehling, S.; Kehle, A.; Demar, M.; Kieber, J.J.; Lohmann, J.U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 2005, 438, 1172–1175. [Google Scholar] [CrossRef]
- Zubo, Y.O.; Schaller, G.E. Role of the cytokinin-activated type-B response regulators in hormone crosstalk. Plants 2020, 9, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.H.; Liu, Y.B.; Bai, B.; Zhang, X.S. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front. Plant Sci. 2015, 5, 792. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.J.; Wang, L.; Sun, W.; Zhang, Y.; Zhou, C.; Su, Y.H.; Li, W.; Sun, T.T.; Zhao, X.Y.; Li, X.G.; et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from regulation of cytokinin biosynthesis by AUXIN RESPONSEFACTOR 3. Plant Physiol. 2013, 161, 240–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Wang, R.; Zi, H.; Li, Y.; Cao, X.; Li, D.; Tong, J.; Pan, Y.; Jiao, Y.; Liu, R.; et al. AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. Plant Cell 2018, 30, 324–346. [Google Scholar] [CrossRef] [Green Version]
- Ross, E.J.H.; Stone, J.M.; Elowsky, C.G.; Arredondo-Peter, R.; Klucas, R.V.; Sarath, G. Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J. Exp. Bot. 2004, 55, 1721–1731. [Google Scholar] [CrossRef]
- Meng, W.J.; Cheng, Z.J.; Sang, Y.L.; Zhang, M.M.; Rong, X.F.; Wang, Z.W.; Tang, Y.Y.; Zhang, X.S. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 2017, 29, 1357–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Dai, X.; Li, J.; Liu, N.; Liu, X.; Li, S.; Xiang, F. The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis. Plant Cell 2020, 32, 2271–2291. [Google Scholar] [CrossRef]
- Ojolo, S.P.; Cao, S.; Priyadarshani, S.V.G.N.; Li, W.; Yan, M.; Aslam, M.; Zhao, H.; Qin, Y. Regulation of plant growth and development: A review from a chromatin remodeling perspective. Front. Plant Sci. 2018, 9, 1232. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, L.; Zhang, C. Regulation of shoot apical meristem and axillary meristem development in plants. Int. J. Mol. Sci. 2020, 21, 2917. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Iwase, A.; Rymen, B.; Harashima, H.; Shibata, M.; Ohnuma, M.; Breuer, C.; Morao, A.K.; de Lucas, M.; de Veylder, L.; et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat. Plants 2015, 1, 15089. [Google Scholar] [CrossRef] [Green Version]
- Daimon, Y.; Takabe, K.; Tasaka, M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 2003, 44, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Hu, X.; Qin, P.; Prasad, K.; Hu, Y.; Xu, L. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol. 2018, 59, 734–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareem, A.; Durgaprasad, K.; Sugimoto, K.; Du, Y.; Pulianmackal, A.J.; Trivedi, Z.B.; Abhayadev, P.V.; Pinon, V.; Meyerowitz, E.M.; Scheres, B.; et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 2015, 25, 1017–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhang, H.; Dong, Y.X.; Hao, Y.J.; Zhang, X.S. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytol. 2018, 217, 219–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lardon, R.; Geelen, D. Natural variation in plant pluripotency and regeneration. Plants 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Harashima, H.; Ikeuchi, M.; Rymen, B.; Ohnuma, M.; Komaki, S.; Morohashi, K.; Kurata, T.; Nakata, M.; Ohme-Takagi, M.; et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 2017, 29, 54–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, Y.; Banno, H.; Niu, Q.W.; Howell, S.H.; Chua, N.H. The ENHANCER of SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol. 2006, 47, 1443–1456. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Yang, W.; Forner, J.; Lohmann, J.U.; Noh, B.; Noh, Y. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis. EMBO J. 2018, 37, e98726. [Google Scholar] [CrossRef]
- Gordon, S.P.; Heisler, M.G.; Reddy, G.V.; Ohno, C.; Das, P.; Meyerowitz, E.M. Pattern formation duringde novo assembly of the Arabidopsis shoot meristem. Development 2007, 134, 3539–3548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Zhang, C.; Xu, J. Control of cell fate reprogramming towards de novo shoot organogenesis. Plant Cell Physiol. 2018, 59, 713–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Poretska, O.; Sieberer, T. ALTERED MERISTEM PROGRAM1 restricts shoot meristemproliferation and regeneration by limiting HD-ZIP III-mediated expression of RAP2.6L. Plant Physiol. 2018, 177, 1580–1594. [Google Scholar] [CrossRef]
- Iwase, A.; Mitsuda, N.; Koyama, T.; Hiratsu, K.; Kojima, M.; Arai, T.; Inoue, Y.; Seki, M.; Sakakibara, H.; Sugimoto, K.; et al. The AP2/ERF transcription factorWIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 2011, 21, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, L. Transcription factors WOX11/12 directly activate WOX5/7to promote root primordia initiation and organogenesis. Plant Physiol. 2016, 172, 2363–2373. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, H.; Kojima, M.; Kuroha, T.; Ishida, T.; Sugimoto, K.; Kiba, T.; Sakakibara, H. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J. 2012, 69, 355–365. [Google Scholar] [CrossRef]
- Fukudome, A.; Koiwa, H. Cytokinin-overinduced transcription factors and thalianol cluster genes in CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4-silenced Arabidopsis roots during de novo shoot organogenesis. Plant Signal. Behav. 2018, 13, e1513299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, A.; Clabaugh, I.; To, J.P.; Maxwell, B.B.; Chiang, Y.H.; Schaller, G.E.; Loraine, A.; Kieber, J.J. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 2013, 162, 272–294. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M.; Sasaki, N.; Tsuge, T.; Aoyama, T.; Oka, A. ARR1 directlyactivates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol. 2007, 48, 263–277. [Google Scholar] [CrossRef]
- Xie, M.; Chen, H.; Huang, L.; O’Neil, R.C.; Shokhirev, M.N.; Ecker, J.R. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat. Commun. 2018, 9, 1604. [Google Scholar] [CrossRef] [Green Version]
- Brenner, W.G.; Schmülling, T. Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Front. Plant Sci. 2015, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buechel, S.; Leibfried, A.; To, J.P.C.; Zhao, Z.; Andersen, S.U.; Kieber, J.J.; Lohmann, J.U. Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. Eur. J. Cell Biol. 2010, 89, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Zubo, Y.O.; Blakley, I.C.; Yamburenko, M.V.; Worthen, J.M.; Street, I.H.; Franco-Zorrilla, J.M.; Zhang, W.; Hill, K.; Raines, T.; Solano, R.; et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 114, E5995–E6004. [Google Scholar] [CrossRef] [Green Version]
- Franco-Zorrilla, J.M.; López-Vidriero, I.; Carrasco, J.L.; Godoy, M.; Vera, P.; Solano, R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl. Acad. Sci. USA 2014, 111, 2367–2372. [Google Scholar] [CrossRef] [Green Version]
- Jerzmanowski, A. SWI/SNF chromatin remodeling and linker histones in plants. Biochim. Biophys. Acta 2007, 1769, 330–345. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Cheng, Z.J.; Su, Y.H.; Han, H.N.; Zhang, Y.; Zhang, X.S. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet. 2011, 7, e1002243. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; He, Z.; Guo, L.; Liu, X. Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems. Plant Physiol. 2015, 168, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Ma, X.; Han, H.N.; Hao, Y.J.; Zhang, X.S. Atprmt5 regulates shoot regeneration through mediating histone h4r3 dimethylation on krps and pre-mrna splicing of rkp in Arabidopsis. Mol. Plant 2016, 9, 1634–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archacki, R.; Yatusevich, R.; Buszewicz, D.; Krzyczmonik, K.; Patryn, J.; Iwanicka-Nowicka, R.; Biecek, P.; Wilczyński, B.; Koblowska, M.; Jerzmanowski, A.; et al. Arabidopsis SWI/SNF chromatin remodelling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Res. 2017, 45, 3116–3129. [Google Scholar] [PubMed] [Green Version]
NAME ABBRV. | AGI LOCUS CODE | GENE DESCRIPTION | NOTES | Reference |
---|---|---|---|---|
AHK4/WOL | AT2G01830 | Cytokinin signaling | ARABIDOPSIS HISTIDINE KINASE; ”shoot specific” cytokinin receptor | [23,24,49] |
ARF3 | AT2G33860 | B3, ARF | TR; AUXIN RESPONSE FACTOR3; indirect blocking of cytokinin biosynthesis (represses IPT5—CK biosynthesis enzyme) | [3,50,51] |
ARR1 | AT3G16857 | Type-B ARR | TR; regulator of WUS expression; stimulator/inhibitor (???) | [45,52,53,54] |
ARR10 | AT4G31920 | Type-B ARR | TR; a positive regulator of WUS expression | [45,53] |
ARR12 | AT2G25180 | Type-B ARR | TR a critical positive regulator of WUS expression | [44,45,53] |
ARR7 | AT1G19050 | Type-A ARR | negative feedback on the multistep-phosphorelay signaling | [7,26,38] |
ARR15 | At1G74890 | Type-A ARR | negative feedback on the multistep-phosphorelay signaling | [7,26,38] |
BRM | AT2G46020 | SWI2/SNF2 ATPase | ER; involved in ATP-dependent chromatin remodeling | [55,56] |
CLF | AT2G23380 | PRC2 subunit | ER; subunit of Polycomb Repressive Complex (2)—chromatin remodeling factors | [3,45,57] |
CUC1 | AT3G15170 | NAC domain | TR; shoot-promoting TF; SAM initiation and cotyledon boundary establishment; promote STM expression | [3,45,58,59] |
CUC2 | AT5G53950 | NAC domain | TR; shoot-promoting TF; SAM initiation and cotyledon boundary establishment; promote STM expression | [3,45,58,59,60] |
CYCD3;1 | AT4G34160 | CYCD3 D-type cyclin | G1/S transition of mitotic cell cycle; regulation of cell population proliferation, expressed in SAM | [61,62] |
CYCD3;2 | AT5G67260 | CYCD3 D-type cyclin | G1/S transition of mitotic cell cycle; regulation of cell population proliferation, expressed in SAM | [61,62] |
CYCD3;3 | AT3G50070 | CYCD3 D-type cyclin | G1/S transition of mitotic cell cycle; regulation of cell population proliferation, expressed in SAM | [61,62] |
E2Fa | AT2G36010 | E2F | TR; positive regulation of cell cycle; influences chromatin remodeling | [3,61] |
ESR1 | AT1G12980 | AP2/ERF | TR; TR, cytokinin response; DNA-binding TF | [63] |
ESR2 | AT1G24590 | AP2/ERF | TR; response to auxin; cycle cell regulation | [64] |
HAG1/GCN5 | AT3G54610 | GNAT/MYST | ER; histone acetyltransferase conducting histone modification | [65] |
IPT3 | AT3G63110 | Cytokinin synthesis | adenosine phosphate isopentenyltransferase 3, cytokinin synthase, expressed in shoot apex | [50,55] |
IPT5 | AT5G19040 | Cytokinin synthesis | adenosine phosphate isopentenyltransferase 5, cytokinin synthase | [50,62] |
LBD16 | AT2G42430 | LOB | TR, involved in hormone-mediated signaling pathway; pluripotency acquisition | [59] |
MET1/DDM2 | AT5G49160 | DNA methylation | ER epigenetic regulation of WUS expression | [61] |
PHB | AT2G34710 | HD ZIP III | TR, spatial developmental regulators in shoot formation, confining of WUS expression to shoot progenitor; STM upregulation | [3,45,62] |
PHV | AT1G30490 | HD ZIP III | TR, spatial developmental regulators in shoot formation, confining of WUS expression to shoot progenitor; STM upregulation | [3,45,62] |
PIN1 | AT1G73590 | Auxin transporter | engaged in shoot and root development; callus formation | [62,66] |
PLT3 | AT5G10510 | AP2/ERF | TR, AP2-domain TF; involved in formation of callus | [60,62,67] |
PLT5 | AT5G57390 | AP2/ERF | TR, indirect influence on WUS-induced cell fate reprogramming and callus formation | [60,67] |
PLT7 | AT5G65510 | AP2/ERF | TR, indirect influence on WUS-induced cell fate reprogramming and callus formation | [60,67] |
RAP2.6L | AT5G13330 | AP2/ERF | TR, involved in shoot stem cell specification | [68] |
REV | AT5G60690 | HD ZIP III | TR, spatial developmental regulators in shoot formation, confining of WUS expression to shoot progenitor; STM upregulation | [3,45,62] |
SCR | AT3G54220 | GRAS | TR, engaged in shoot and root development; callus formation | [62,65] |
STM | AT1G62360 | KNOX | TR, a key switch responsible for meristem maintenance; expressed in promeristem | [45] |
SWN | AT4G02020 | PRC2 subunit | ER, involved in ATP-dependent chromatin remodeling | [45,57] |
SYD | AT2G28290 | SWI2/SNF2 ATPase | involved in ATP-dependent chromatin remodeling, positive regulator of WUS expression | [55,56] |
WIND1 | AT1G78080 | AP2/ERF | TR; reprogramming regulator, key role in formation of callus | [63,69] |
WOX5 | AT3G11260 | Homeobox | TR; a member of the WUS family of homeodomain TF, acquisition of competency for shoot regeneration | [3,63,70] |
WOX7 | AT5G05770 | Homeobox | TR; a member of the WUS family of homeodomain TF; acquisition of competency for shoot regeneration | [3,65,70] |
WOX11 | AT3G03660 | Homeobox | TR; a member of the WUS family of homeodomain TF; acquisition of competency for shoot regeneration | [3,59,70] |
WOX14 | AT1G20700 | Homeobox | TR; a member of the WUS family of homeodomain TF; acquisition of competency for shoot regeneration | [3,65] |
WUS | AT2G17950 | Homeobox | TR; strategic gene indispensable to shoot progenitor formation; WUS defines the organizing center in SAM | [45,53,66] |
YUC1 | AT4G32540 | Auxin synthesis | OTHERS; YUC-mediated auxin biosynthesis is required for efficient shoot regeneration (callus) | [50,62] |
YUC4 | AT5G11320 | Auxin synthesis | OTHERS; YUC-mediated auxin biosynthesis is required for efficient shoot regeneration (callus) | [50,62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hnatuszko-Konka, K.; Gerszberg, A.; Weremczuk-Jeżyna, I.; Grzegorczyk-Karolak, I. Cytokinin Signaling and De Novo Shoot Organogenesis. Genes 2021, 12, 265. https://doi.org/10.3390/genes12020265
Hnatuszko-Konka K, Gerszberg A, Weremczuk-Jeżyna I, Grzegorczyk-Karolak I. Cytokinin Signaling and De Novo Shoot Organogenesis. Genes. 2021; 12(2):265. https://doi.org/10.3390/genes12020265
Chicago/Turabian StyleHnatuszko-Konka, Katarzyna, Aneta Gerszberg, Izabela Weremczuk-Jeżyna, and Izabela Grzegorczyk-Karolak. 2021. "Cytokinin Signaling and De Novo Shoot Organogenesis" Genes 12, no. 2: 265. https://doi.org/10.3390/genes12020265
APA StyleHnatuszko-Konka, K., Gerszberg, A., Weremczuk-Jeżyna, I., & Grzegorczyk-Karolak, I. (2021). Cytokinin Signaling and De Novo Shoot Organogenesis. Genes, 12(2), 265. https://doi.org/10.3390/genes12020265