In Vitro Plant Regeneration in Conifers: The Role of WOX and KNOX Gene Families
Abstract
:1. Introduction
2. In Vitro Plant Regeneration in Conifers
2.1. Somatic Embryogenesis in Conifers
2.2. De Novo Organogenesis in Conifers
3. The Role of WOX Genes during Somatic Embryogenesis and De Novo Organogenesis in Conifers
Species | Name Abbreviation | Locus Code | Function and Location | References |
---|---|---|---|---|
i. WUS clade | ||||
Arabidopsis thaliana | AtWOX1 | AT3G18010 | Lateral organ primordia formation | [75,84,85] |
AtWOX2 | AT5G59340 | Apical embryo and embryo patterning | [75,76] | |
AtWOX3/PRS | AT2G28610 | SAM, lateral organ formation | [81] | |
AtWOX4 | AT1G46480 | Vascular tissue, procambial development | [82] | |
AtWOX5 | AT3G11260 | Stem cell maintenance (RAM) | [80] | |
AtWOX6 | AT2G01500 | Cold-stress response | [83] | |
AtWOX7 | AT5G05770 | Lateral root development | [86] | |
AtWUS | AT2G17950 | Stem cell maintenance (SAM) | [79] | |
Ginkgo biloba | GbWOX2 | FM882124 | Embryo patterning | [88] |
GbWOX3A | FM882125 | Lateral organ outgrowth | [88] | |
GbWOX3B | FM882126 | Lateral organ outgrowth | [88] | |
GbWOX4 | HF564615 | Germinating embryo, vascular cambium | [88] | |
GbWUS | FM882128 | Embryo, shoot tip | [88,90] | |
Gnetum gnemon | GgWOX2A | HF564611 | Embryo patterning | [88] |
GgWOX2B | HF564619 | Embryo patterning | [88] | |
GgWOX4 | HF564612 | Germinating embryo, vascular cambium | [88] | |
GgWOX6/WOXX | HF564620 | n/a | [88] | |
GgWOXY | HF564621 | n/a | [88] | |
GgWUS | FM882154 | Embryo, shoot tip | [88,90] | |
Picea abies | PaWOX2 | AM286747 | Embryo patterning | [68,71,72,73] |
PaWOX3 | JX411947 | Lateral organ outgrowth | [68,89] | |
PaWOX4 | JX411948 | Germinating embryo, vascular cambium | [68] | |
PaWOX5 | JX411949 | Embryo, SAM, RAM | [68] | |
PaWOXX | KX011459 | Embryo, SAM, needles | [69] | |
PaWUS | JX512364 | Embryo, shoot tip | [68] | |
Pinus pinaster | PpWOX2 | KU962991 | Embryo patterning | [69] |
PpWOX3 | KU962992 | Lateral organ outgrowth | [69] | |
PpWOX4 | KU962993 | Germinating embryo, vascular cambium | [69] | |
PpWOX5 | KT356216 | Embryo, SAM, RAM | [69] | |
PpWOXX | KU962995 | Embryo, SAM, needles | [69] | |
PpWUS | KT356213 | Embryo, shoot tip | [69] | |
Pinus sylvestris | PsWOX2 | FM882159 | Embryo patterning | [90] |
PsWOX3 | FM882158 | Lateral organ outgrowth | [90] | |
PsWOX4 | HF564616 | Germinating embryo, vascular cambium | [90] | |
PsWOX5/WUS | FM882160 | Embryo, SAM, RAM | [90] | |
Pinus taeda | PtWOX2 | KX011449 | Embryo patterning | [69] |
PtWOX3 | KX011450 | Lateral organ outgrowth | [69] | |
PtWOX4 | KX011451 | Germinating embryo, vascular cambium | [69] | |
PtWOX5 | KX011452 | Embryo, SAM, RAM | [69] | |
PtWOXX | KX011454 | Embryo, SAM, needles | [69] | |
PtWUS | KX011458 | Embryo, shoot tip | [69] | |
ii. Intermediate clade | ||||
Arabidopsis thaliana | AtWOX8/STPL | AT5G45980 | Basal embryo patterning | [75,76] |
AtWOX9/STIMPY | AT2G33880 | Basal embryo patterning, cell proliferation | [75] | |
AtWOX11 | AT3G03660 | Adventitious root formation | [78] | |
AtWOX12 | AT5G17810 | De novo root organogenesis | [78] | |
Ginkgo biloba | GbWOX9 | HF564618 | n/a | [88] |
Gnetum gnemon | GgWOX9 | HF564613 | n/a | [88] |
Picea abies | PaWOX8/9 | GU944670 | Embryo patterning | [68,73,77] |
PaWOX8A | JX411950 | Embryo patterning | [68] | |
PaWOX8B | JX411951 | Embryo patterning | [68] | |
PaWOX8C | JX411952 | Embryo patterning | [68] | |
PaWOX8D | JX411953 | Embryo patterning | [68] | |
Pinus pinaster | PpWOXB | KU962997 | Embryo patterning | [69] |
PpWOXC | KU962998 | Embryo patterning | [69] | |
PpWOXD | KU962999 | Embryo patterning | [69] | |
PpWOXE | KU963000 | Embryo patterning | [69] | |
PpWOXF | KU963001 | Embryo | [69] | |
Pinus sylvestris | PsWOX9 | FM882155 | n/a | [90] |
Pinus taeda | PtWOXB | KX011456 | Embryo patterning | [69] |
PtWOXE | KX011457 | Embryo patterning | [69] | |
iii. Ancient clade | ||||
Arabidopsis thaliana | AtWOX10 | AT1G20710 | n/a | [67,70] |
AtWOX13 | AT4G35550 | Floral transition, root development | [70] | |
AtWOX14 | AT1G20700 | Floral transition, root development | [70] | |
Ginkgo biloba | GbWOX13 | HF564617 | n/a | [88] |
Gnetum gnemon | GgWOX13 | HF564614 | n/a | [88] |
Picea abies | PaWOX13 | n/a | n/a | [68] |
PaWOXG | MG545153 | n/a | [69] | |
Pinus pinaster | PpWOX13 | KU962994 | n/a | [69] |
PpWOXA | KU962996 | n/a | [69] | |
PpWOXG | MG545154 | n/a | [69] | |
Pinus sylvestris | PsWOX13 | FM882156 | n/a | [90] |
Pinus taeda | PtWOX13 | KX011453 | n/a | [69] |
PtWOXA | KX011455 | n/a | [69] | |
PtWOXG | MG545155 | n/a | [69] |
4. The Role of KNOX Genes during Somatic Embryogenesis and De Novo Organogenesis in Conifers
Species | Name Abbreviation | Locus Code | Function and Location | References |
---|---|---|---|---|
i. Class I | ||||
Arabidopsis thaliana | AtSTM | AT1G62360 | SAM formation and maintenance of stem cell population, floral and carpel formation | [100,101,102] |
AtBP/KNAT1 | AT4G08150 | Stem cell maintenance | [107,108,109] | |
AtKNAT2 | AT1G70510 | Carpel development | [107,108,109] | |
AtKNAT6 | AT1G23380 | Establishment SAM boundaries during embryogenesis, shoot apex and root | [110] | |
Picea abies | PaKN1/HBK3 | AF483278 | General functions on somatic embryo development | [113,114,116,118,119] |
PaKN2/HBK1 | AF063248 | SAM of vegetative and reproductive buds and general functions on somatic embryos | [112,113,114,116] | |
PaKN3/HBK2 | AF483277 | Embryogenic cell lines competent to form fully mature embryos | [113,114,116] | |
PaKN4/HBK4 | AY680389/AY680400 | Embryogenic cell lines competent to form fully mature embryos | [114,116] | |
Picea glauca | PgKN1 | AY680381/AY680392 | n/a | [114] |
PgKN2 | AY680383/AY680394 | n/a | [114] | |
PgKN3 | AY680385/AY680396 | n/a | [114] | |
PgKN4 | AY680390/AY680401 | n/a | [114] | |
Picea mariana | PmKN1 | U90091 | n/a | [114] |
PmKN2 | U90092 | n/a | [114] | |
PmKN3 | AY680386/AY680397 | n/a | [114] | |
PmKN4 | AY680405 | n/a | [114] | |
Pinus pinaster | PpKN1 | KT356208 | Embryo, hypocotyl, root and shoot apex | [115] |
PpKN2 | KT356209 | Somatic embryo and germination | [115] | |
PpKN3 | KT356217/KT356211 | SAM and vascular tissues, hypocotyl and shoot apex | [115] | |
PpKN4 | KT356210 | Embryo, hypocotyl, root and shoot apex | [115] | |
Pinus strobus | PsKN1 | AY680380/AY680391 | n/a | [114] |
PsKN2 | AY680382/AY680393 | n/a | [114] | |
PsKN3 | AY680384/AY680395 | n/a | [114] | |
PsKN4 | AY680388/AY680399 | n/a | [114] | |
Pinus taeda | PtKN1 | AY680402 | n/a | [114] |
PtKN2 | AY680403 | n/a | [114] | |
PtKN3 | AY680404 | n/a | [114] | |
PtKN4 | AY680387/AY680398 | n/a | [114] | |
ii. Class II | ||||
Arabidopsis thaliana | AtKNAT3 | AT5G25220 | Mature organs | [111] |
AtKNAT4 | AT5G11060 | Mature organs | [111] | |
AtKNAT5 | AT4G32040 | Mature organs | [111] | |
AtKNAT7 | AT1G62990 | Mature organs | [111] | |
Picea abies | PaKN5 | MK580154 | n/a | [115] |
Pinus pinaster | PpKN5 | MK580155 | Shoot apex and primordia of young needles | [115] |
PpKN6 | MK580156 | Early embryos | [115] | |
Pinus taeda | PpKN5 | MK580157 | n/a | [115] |
PpKN6 | MK580158 | n/a | [115] | |
iii. Class M | ||||
Arabidopsis thaliana | AtKNATM | AT1G14760 | Lateral domain on flower meristem, involved on flower transition | [98,99] |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Neale, D.B.; Wheeler, N.C. The conifers. In The Conifers: Genomes, Variation and Evolution, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 1–21. [Google Scholar]
- Farjon, A. Conifers of the World. Kew Bull. 2018, 73, 8. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Bonga, J.M. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers. Can. J. For. Res. 2015, 45, 1–5. [Google Scholar] [CrossRef]
- Sarmast, M.K. Genetic transformation and somaclonal variation in conifers. Plant Biotechnol. Rep. 2016, 10, 309–325. [Google Scholar] [CrossRef]
- Fernandez i Marti, A.; Dodd, R.S. Using CRISPR as a gene editing tool for validating adaptive gene function in tree landscape genomics. Front. Ecol. Evol. 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Filonova, L.; Bozhkov, P.; von Arnold, S. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-laps tracking. J. Exp. Bot. 2000, 51, 249–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuesta, C.; Rodríguez, A.; Centeno, M.L.; Ordás, R.J.; Fernández, B. Caulogenic induction in cotyledons of stone pine (Pinus pinea): Relationship between organogenic response and benzyladenine trends in selected families. J. Plant Physiol. 2009, 166, 1162–1171. [Google Scholar] [CrossRef]
- Nystedt, B.; Street, N.R.; Wetterbom, A.; Zuccolo, A.; Lin, Y.C.; Scofield, D.G.; Vezzi, F.; Delhomme, N.; Giacomello, S.; Alexeyenko, A.; et al. The Norway spruce genome sequence and conifer genome evolution. Nature 2013, 497, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Neale, D.B.; Wheeler, N.C. Gene and genome sequencing in conifers: Modern era. In The Conifers: Genomes, Variation and Evolution, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 43–60. [Google Scholar]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant regeneration: Cellular origins and molecular mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Favero, D.S.; Sakamoto, Y.; Iwase, A.; Coleman, D.; Rymen, B.; Sugimoto, K. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 2019, 13, 54. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; De Vega, J.J.; Miguel, C.M. Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC Plant Biol. 2018, 18, 379. [Google Scholar] [CrossRef]
- Alonso, P.; Cortizo, M.; Cantón, F.R.; Fernández, B.; Rodríguez, A.; Centeno, M.L.; Cánovas, F.M.; Ordás, R.J. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR. Tree Physiol. 2007, 27, 1721–1730. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.S.; Chaves, I.; Vasques Costa, B.; Lin, Y.-C.; Lopes, S.; Milhinhos, A.; Van de Peer, Y.; Miguel, C.M. Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci. Rep. 2019, 9, 11327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelu-Walter, M.-A.; Klimaszewska, K.; Miguel, C.; Aronen, T.; Hargreaves, C.; Teyssier, C.; Trontin, J.-F. Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: Bottlenecks and recent advances. In Somatic Embryogenesis: Fundamental Aspects and Applications, 1st ed.; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 319–365. [Google Scholar] [CrossRef]
- Trontin, J.-F.; Klimaszewska, K.; Morel, A.; Hargreaves, C.; Lelu-Walter, M.-A. Molecular aspects of conifer zygotic and somatic embryo development: A review of genome-wide approaches and recent insights. In In Vitro Embryogenesis in Higher Plants, Methods in Molecular Biology; Germana, M.A., Lambardi, M., Eds.; Springer Science + Business Media: New York, NY, USA, 2016; pp. 167–207. [Google Scholar] [CrossRef]
- von Arnold, S.; Larsson, E.; Moschou, P.; Zhu, T.; Uddenberg, D.; Bozhkov, P. Norway spruce as a model for studying regulation of somatic embryo development in conifers. In Vegetative Propagation of Forest Trees; Park, Y.-S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science (NIFoS): Seoul, Korea, 2016; pp. 351–372. [Google Scholar]
- Díaz-Sala, C. Molecular dissection of the regenerative capacity of forest tree species: Special focus on conifers. Front. Plant Sci. 2019, 9, 1943. [Google Scholar] [CrossRef] [Green Version]
- von Arnold, S.; Clapham, D.; Abrahamsson, M. Embryology in conifers. In Advances in Botanical Research, Molecular Physiology and Biotechnology of Trees; Cánovas, F.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 89, pp. 157–184. [Google Scholar] [CrossRef]
- Mukherjee, K.; Brocchieri, L.; Bürglin, T.R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 2009, 26, 2775–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalupa, V. Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) karst. Commun. Inst. For. 1985, 14, 57–63. [Google Scholar]
- Hakman, I.; Fowke, L.C.; von Arnold, S.; Erikson, T. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 1985, 38, 53–59. [Google Scholar] [CrossRef]
- Nagmani, R.; Bonga, J.M. Embryogenesis in sub-cultured callus of Larix decidua. Can. J. For. Res. 1985, 15, 1088–1091. [Google Scholar] [CrossRef]
- Bonga, J.M.; Klimaszewska, K.K.; von Aderkas, P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss. Organ Cult. 2010, 100, 241–254. [Google Scholar] [CrossRef]
- Bonga, J.M. Conifer clonal propagation in tree improvement programs. In Vegetative Propagation of Forest Trees; Park, Y.-S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science (NIFoS): Seoul, Korea, 2016; pp. 3–31. [Google Scholar]
- Bonga, J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees 2017, 31, 781–789. [Google Scholar] [CrossRef]
- Neelakandan, A.K.; Wang, K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep. 2012, 31, 597–620. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Hargreaves, C.; Lelu-Walter, M.-A.; Trontin, J.-F. Advances in conifer somatic embryogenesis since year 2000. Methods Mol. Biol. 2016, 1359, 131–166. [Google Scholar] [CrossRef]
- Harvengt, L.; Trontin, J.-F.; Reymond, I.; Canlet, F.; Paques, M. Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis. Planta 2001, 213, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Varis, S.; Klimaszewska, K.; Aronen, T. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees. Front. Plant Sci. 2018, 9, 1551. [Google Scholar] [CrossRef] [PubMed]
- Klimaszewska, K.; Overton, C.; Stewart, D.; Rutledge, R.G. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 2011, 233, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Malabadi, R.B.; Choudhury, H.; Tandon, P. Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and gellan gum. Sci. Hortic. 2004, 102, 449–459. [Google Scholar] [CrossRef]
- Malabadi, R.B.; van Staden, J. Somatic embryos can be induced from the vegetative shoot apex of mature Pinus patula trees. S. Afr. J. Bot. 2003, 69, 450–451. [Google Scholar] [CrossRef] [Green Version]
- Malabadi, R.B.; van Staden, J. Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiol. 2005, 25, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Malabadi, R.B.; Nataraja, K. Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg, trees. In Vitro Cell. Dev. Biol. Plant 2006, 42, 152–159. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Nataraja, K. Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana A.B. Jaccks. J. Plant Sci. 2007, 2, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Malabadi, R.B.; Nataraja, K. Plant regeneration via somatic embryogenesis using secondary needles of mature trees of Pinus roxburghii Sarg. Int. J. Bot. 2007, 3, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Trontin, J.-F.; Aronen, T.; Hargreaves, C.; Montalbán, I.A.; Moncaleán, P.; Reeves, C.; Quoniou, S.; Lelu-Walter, M.-A.; Klimaszewska, K. International effort to induce somatic embryogenesis in adult pine trees. In Vegetative Propagation of Forest Trees; Park, Y.-S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science (NIFoS): Seoul, Korea, 2016; pp. 211–260. [Google Scholar]
- Breton, D.; Harvengt, L.; Trontin, J.-F.; Bouvet, A.; Favre, J.-M. Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tiss. Org. 2006, 87, 95–108. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Bueno, N.; Cortizo, M.; Ordás, R.J. Improving plantlet yield in Pinus pinaster somatic embryogenesis. Scand. J. For. Res. 2013, 28, 613–620. [Google Scholar] [CrossRef]
- Marum, L.; Rocheta, M.; Maroco, J.; Oliveira, M.M.; Miguel, C. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep. 2009, 28, 673–682. [Google Scholar] [CrossRef]
- von Arnold, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tiss. Org. 2002, 69, 233–249. [Google Scholar] [CrossRef]
- Tereso, S.; Zoglauer, K.; Milhinhos, A.; Miguel, C.; Oliveira, M.M. Zygotic and somatic embryo morphogenesis in Pinus pinaster: Comparative histological and histochemical study. Tree Physiol. 2007, 27, 661–669. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Trontin, J.-F.; Becwar, M.R.; Devillard, C.; Park, Y.-S.; Lelu-Walter, M.-A. Recent Progress in somatic embryogenesis of four Pinus spp. Tree For. Sci. Biotech. 2007, 1, 11–25. [Google Scholar]
- Christianson, M.L.; Warnick, D.A. Competence and determination in the process of in vitro shoot organogenesis. Dev. Biol. 1983, 95, 288–293. [Google Scholar] [CrossRef]
- Flinn, B.; Webb, D.; Georgis, W. In vitro control of caulogenesis by growth regulators and media components in embryonic explants of eastern white pine (Pinus strobus). Can. J. Bot. 1986, 64, 1948–1956. [Google Scholar] [CrossRef]
- Montalbán, I.A.; De Diego, N.; Moncaleán, P. Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 2011, 84, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Moncaleán, P.; Alonso, P.; Centeno, M.L.; Cortizo, M.; Rodríguez, A.; Fernández, B.; Ordás, R.J. Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol. 2005, 25, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, C.; Ordás, R.J.; Fernández, B.; Rodríguez, A. Clonal micropropagation of six selected half-sibling families of Pinus pinea and somaclonal variation analysis. Plant Cell Tiss. Org. 2008, 95, 125–130. [Google Scholar] [CrossRef]
- Cuesta, C.; Novák, O.; Ordás, R.J.; Fernández, B.; Strnad, M.; Dolezal, K.; Rodríguez, A. Endogenous cytokinin profiles and their relationships to between-family differences during adventitious caulogenesis in Pinus pinea cotyledons. J. Plant Physiol. 2012, 169, 1830–1837. [Google Scholar] [CrossRef]
- Valdés, A.E.; Ordás, R.J.; Fernández, B.; Centeno, M.L. Relationships between hormonal contents and the organogenic response in Pinus pinea cotyledons. Plant Physiol. Biochem. 2001, 39, 377–384. [Google Scholar] [CrossRef]
- Cortizo, M.; Cuesta, C.; Centeno, M.L.; Rodríguez, A.; Fernández, B.; Ordás, R.J. Benzyladenine metabolism and temporal capacity of Pinus pinea L. cotyledons to form buds in vitro. J. Plant Physiol. 2009, 166, 1069–1076. [Google Scholar] [CrossRef]
- Flinn, B.; Webb, D.; Newcomb, W. The role of cell clusters and promeristemoids indetermination and competence for caulogenesis by Pinus strobus cotyledons in vitro. Can. J. Bot. 1988, 66, 1556–1565. [Google Scholar] [CrossRef]
- Aitken, J.; Horgan, K.J.; Thorpe, T.A. Influence of explant selection on the shoot-forming capacity of juvenile tissue of Pinus radiata. Can. J. For. Res. 1981, 11, 112–117. [Google Scholar] [CrossRef]
- Alonso, P.; Moncaleán, P.; Fernández, B.; Rodríguez, A.; Centeno, M.L.; Ordás, R.J. An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann. For. Sci. 2006, 63, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Ouyang, F.; Guo, Z. Plant regeneration through organogenesis from callus induced from mature zygotic embryos of loblolly pine. Plant Cell Rep. 1998, 17, 557–560. [Google Scholar] [CrossRef]
- Schestibratov, K.A.; Mikhailov, R.V.; Dolgov, S.V. Plantlet regeneration from subculturable nodular callus of Pinus radiata. Plant Cell Tiss. Org. 2003, 72, 139–146. [Google Scholar] [CrossRef]
- Tang, W.; Newton, R.J. Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobus L.). Plant Cell Rep. 2005, 24, 1–9. [Google Scholar] [CrossRef]
- Carneros, E.; Celestino, C.; Klimaszewska, K.; Park, Y.-S.; Toribio, M.; Bonga, J.M. Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tiss. Org. 2009, 98, 165–178. [Google Scholar] [CrossRef]
- Montalbán, I.; De Diego, N.; Aguirre Igartua, E.; Setién, A.; Moncaleán, P. A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants. Plant Biotechnol. Rep. 2011, 5, 177–186. [Google Scholar] [CrossRef]
- Sarmast, M.K. In vitro propagation of conifers using mature shoots. J. For. Res. 2018, 29, 565–574. [Google Scholar] [CrossRef]
- Cortizo, M.; De Diego, N.; Moncaleán, P.; Ordás, R.J. Micropropagation of adult Stone pine (Pinus pinea L.). Trees 2009, 23, 835–842. [Google Scholar] [CrossRef]
- De Diego, N.; Montalbán, I.A.; Fernández, E.; Moncaleán, P. In vitro regeneration of Pinus pinaster adult trees. Can. J. For. Res. 2008, 38, 2607–2615. [Google Scholar] [CrossRef]
- De Diego, N.; Montalbán, I.A.; Moncaleán, P. In vitro regeneration of adult Pinus sylvestris L. trees. S. Afr. J. Bot. 2010, 76, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Cortizo, M.; Alonso, P.; Fernández, B.; Rodríguez, A.; Centeno, M.L.; Ordás, R.J. Micrografting of mature stone pine (Pinus pinea L.) trees. Ann. For. Sci. 2004, 61, 843–845. [Google Scholar] [CrossRef] [Green Version]
- van der Graaff, E.; Laux, T.; Rensing, S.A. The WUS homeobox-containing (WOX) protein family. Genome Biol. 2009, 10, 248. [Google Scholar] [CrossRef]
- Hedman, H.; Zhu, T.; von Arnold, S.; Sohlberg, J.J. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol. 2013, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.M.; Bueno, N.; Cañas, R.A.; Avila, C.; Cánovas, F.M.; Ordás, R.J. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution. Plant Physiol. Biochem. 2018, 123, 304–318. [Google Scholar] [CrossRef]
- Deveaux, Y.; Toffano-Nioche, C.; Claisse, G.; Thareau, V.; Morin, H.; Laufs, P.; Moreau, H.; Kreis, M.; Lecharny, A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol. Biol. 2008, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Moschou, P.N.; Alvarez, J.M.; Sohlberg, J.J.; von Arnold, S. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biol. 2016, 16, 19. [Google Scholar] [CrossRef] [Green Version]
- Palovaara, J.; Hakman, I. Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol. Biol. 2008, 66, 533–549. [Google Scholar] [CrossRef]
- Palovaara, J.; Hallberg, H.; Stasolla, C.; Hakman, I. Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytol. 2010, 188, 122–135. [Google Scholar] [CrossRef]
- Park, S.-Y.; Klimaszewska, K.; Park, J.-Y.; Mansfield, S.D. Lodgepole pine: The first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol. 2010, 30, 1469–1478. [Google Scholar] [CrossRef]
- Haecker, A.; Groß-Hardt, R.; Geiges, B.; Sarkar, A.; Breuninger, H.; Herrmann, M.; Laux, T. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004, 131, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Breuninger, H.; Rikirsch, E.; Hermann, M.; Ueda, M.; Laux, T. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev. Cell 2008, 14, 867–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, T.; Moschou, P.N.; Alvarez, J.M.; Sohlberg, J.J.; von Arnold, S. WUSCHEL-RELATED HOMEOBOX 8/9 is important for proper embryo patterning in the gymnosperm Norway spruce. J. Exp. Bot. 2014, 65, 6543–6552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Sheng, L.; Xu, Y.; Li, J.; Yang, Z.; Huang, H.; Xu, L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 2014, 26, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Laux, T.; Mayer, K.F.; Berger, J.; Jurgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 1996, 122, 87–96. [Google Scholar]
- Sarkar, A.K.; Luijten, M.; Miyashima, S.; Lenhard, M.; Hashimoto, T.; Nakajima, K.; Scheres, B.; Heidstra, R.; Laux, T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 2007, 446, 811–814. [Google Scholar] [CrossRef]
- Shimizu, R.; Ji, J.; Kelsey, E.; Ohtsu, K.; Schnable, P.S.; Scanlon, M.J. Tissue specificity and evolution of meristematic WOX3 function. Plant Physiol. 2009, 149, 841–850. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Strable, J.; Shimizu, R.; Koenig, D.; Sinha, N.; Scanlon, M.J. WOX4 promotes procambial development. Plant Physiol. 2010, 152, 1346–1356. [Google Scholar] [CrossRef] [Green Version]
- Park, S.O.; Zheng, Z.; Oppenheimer, D.G.; Hauser, B.A. The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development 2005, 132, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Vandenbussche, M.; Horstman, A.; Zethof, J.; Koes, R.; Rijpkema, A.S.; Gerats, T. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 2009, 21, 2269–2283. [Google Scholar] [CrossRef] [Green Version]
- Nakata, M.; Matsumoto, N.; Tsugeki, R.; Rikirsch, E.; Laux, T.; Okada, K. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 2012, 24, 519–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, D.; Hao, Y.; Cui, H. The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Mol. Plant 2016, 9, 261–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimaszewska, K.; Pelletier, G.; Overton, C.; Stewart, D.; Rutledge, R.G. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: Implications for somatic embryo development and somatic seedling growth. Plant Cell Rep. 2010, 29, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Nardmann, J.; Werr, W. Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. New Phytol. 2013, 199, 1081–1092. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Sohlberg, J.; Engström, P.; Zhu, T.; Englund, M.; Moschou, P.N.; von Arnold, S. The WUSCHEL-RELATED HOMEOBOX 3 gene PaWOX3 regulates lateral organ formation in Norway spruce. New Phytol. 2015, 208, 1078–1088. [Google Scholar] [CrossRef] [Green Version]
- Nardmann, J.; Reisewitz, P.; Werr, W. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol. Biol. Evol. 2009, 26, 1745–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Jiao, Y.; Jiao, H.; Zhao, H.; Zhu, Y.-X. Two-step functional innovation of the stem-cell factors WUS/WOX5 during plant evolution. Mol. Biol. Evol. 2017, 34, 640–653. [Google Scholar] [CrossRef] [Green Version]
- Dolzblasz, A.; Nardmann, J.; Clerici, E.; Causier, B.; van der Graaff, E.; Chen, J.; Davies, B.; Werr, W.; Laux, T. Stem cell regulation by Arabidopsis WOX genes. Mol. Plant 2016, 9, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.M.; Bueno, N.; Cuesta, C.; Feito, I.; Ordás, R.J. Hormonal and gene dynamics in de novo shoot meristem formation during adventitious caulogenesis in cotyledons of Pinus pinea. Plant Cell Rep. 2020, 39, 527–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, W.J.; Cheng, Z.J.; Sang, Y.L.; Zhang, M.M.; Rong, X.F.; Wang, Z.W.; Tang, Y.Y.; Zhang, X.S. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 2017, 29, 1357–1372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.Q.; Lian, H.; Zhou, C.M.; Xu, L.; Jiao, Y.; Wang, J.W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 2017, 29, 1073–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubo, Y.O.; Blakley, I.C.; Yamburenko, M.V.; Worthen, J.M.; Street, I.H.; Franco-Zorrilla, J.M.; Zhang, W.; Hill, K.; Raines, T.; Solano, R.; et al. Cytokinin induces genome wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 14, 5995–6004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerstetter, R.; Vollbrecht, E.; Lowe, B.; Veit, B.; Yamaguchi, J.; Hake, S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 1994, 6, 1877–1887. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yang, X.; Zhao, W.; Lang, T.; Samuelsson, T. Evolution, diversification, and expression of KNOX proteins in plants. Front. Plant Sci. 2015, 6, 882. [Google Scholar] [CrossRef] [Green Version]
- Magnani, E.; Hake, S. KNOX lost the OX: The Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell 2008, 20, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Barton, M.K.; Poethig, R.S. Formation of the shoot apical meristem in Arabidopsis thaliana: An analysis of development in the wild type and in the shoot meristemless mutant. Development 1993, 119, 823–831. [Google Scholar]
- Long, J.A.; Maon, E.I.; Medford, J.I.; Barton, M.K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996, 379, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Endrizzi, K.; Moussian, B.; Haecker, A.; Levin, J.Z.; Laux, T. The shoot meristemless gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 1996, 10, 967–979. [Google Scholar] [CrossRef]
- Long, J.A.; Barton, M.K. The development of apical embryonic pattern in Arabidopsis. Development 1998, 125, 3027–3035. [Google Scholar]
- Hake, S.; Smith, H.; Holtan, H.; Magnani, E.; Mele, G.; Ramirez, J. The role of KNOX genes in plant development. Annu. Rev. Cell Dev. Biol. 2004, 20, 125–151. [Google Scholar] [CrossRef] [PubMed]
- Das Gupta, M.; Tsiantis, M. Gene networks and the evolution of plant morphology. Curr. Opin. Plant Biol. 2018, 45, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zhang, C.; Tian, C.; Wang, J.; Wang, Q.; Xu, T.; Xu, Y.; Ohno, C.; Sablowski, R.; Heisler, M.G.; et al. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet. 2016, 12, e1006168. [Google Scholar] [CrossRef] [PubMed]
- Scofield, S.; Dewitte, W.; Murray, J.A.H. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J. 2007, 50, 767–781. [Google Scholar] [CrossRef] [Green Version]
- Scofield, S.; Dewitte, W.; Murray, J.A.H. A model for Arabidopsis class-1 KNOX gene function. Plant Signal. Behav. 2008, 3, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Scofield, S.; Dewitte, W.; Murray, J.A.H. STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1. Plant Signal. Behav. 2014, 9, e28934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belles-Boix, E.; Hamant, O.; Witiak, S.M.; Morin, H.; Traas, J.; Pautot, V. KNAT6: An Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 2006, 18, 1900–1907. [Google Scholar] [CrossRef] [Green Version]
- Furumizu, C.; Alvarez, J.P.; Sakakibara, K.; Bowman, J.L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet. 2015, 11, e1004980. [Google Scholar] [CrossRef] [Green Version]
- Sundås-Larsson, A.; Svenson, M.; Liao, H.; Engström, P. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proc. Natl. Acad. Sci. USA 1998, 95, 15118–15122. [Google Scholar] [CrossRef] [Green Version]
- Hjortswang, H.I.; Sundås-Larsson, A.; Bharathan, G.; Bozhkov, P.V.; von Arnold, S.; Vahala, T. KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol. Biochem. 2002, 40, 837–843. [Google Scholar] [CrossRef]
- Guillet-Claude, C.; Isabel, N.; Pelgas, B.; Bousquet, J. The evolutionary implications of knox-I gene duplications in conifers: Correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Mol. Biol. Evol. 2004, 21, 2233–2245. [Google Scholar] [CrossRef] [Green Version]
- Bueno, N.; Alvarez, J.M.; Ordás, R.J. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. Plant Sci. 2020, 301, 110691. [Google Scholar] [CrossRef]
- Larsson, E.; Sitbon, F.; von Arnold, S. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). Plant Cell Rep. 2012, 31, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, E.; Sitbon, F.; Ljung, K.; von Arnold, S. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol. 2008, 177, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, M.; Tahir, M.; Schroeder, D.; Stasolla, C. Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J. Exp. Bot. 2007, 58, 2851–2861. [Google Scholar] [CrossRef]
- Belmonte, M.F.; Stasolla, C. Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol. Biochem. 2009, 47, 904–911. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, N.; Cuesta, C.; Centeno, M.L.; Ordás, R.J.; Alvarez, J.M. In Vitro Plant Regeneration in Conifers: The Role of WOX and KNOX Gene Families. Genes 2021, 12, 438. https://doi.org/10.3390/genes12030438
Bueno N, Cuesta C, Centeno ML, Ordás RJ, Alvarez JM. In Vitro Plant Regeneration in Conifers: The Role of WOX and KNOX Gene Families. Genes. 2021; 12(3):438. https://doi.org/10.3390/genes12030438
Chicago/Turabian StyleBueno, Natalia, Candela Cuesta, María Luz Centeno, Ricardo J. Ordás, and José M. Alvarez. 2021. "In Vitro Plant Regeneration in Conifers: The Role of WOX and KNOX Gene Families" Genes 12, no. 3: 438. https://doi.org/10.3390/genes12030438
APA StyleBueno, N., Cuesta, C., Centeno, M. L., Ordás, R. J., & Alvarez, J. M. (2021). In Vitro Plant Regeneration in Conifers: The Role of WOX and KNOX Gene Families. Genes, 12(3), 438. https://doi.org/10.3390/genes12030438