Genome Size Diversity in Rare, Endangered, and Protected Orchids in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Estimation of 2C DNA Content
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumann, H.; Künkele, S.; Lorenz, R. Orchideen Europas (Naturführer); Eugen Ulmer: Stuttgart, Germany, 2006; p. 333. [Google Scholar]
- Delforge, P. Orchids of Europe, North Africa and the Middle East; Timber Press: Portland, OR, USA, 2006; p. 592. [Google Scholar]
- Pedersen, H.A.; Mossberg, B. Orchids; William Collins Press: Glasgow, UK, 2017; p. 208. [Google Scholar]
- Tsai, W.-C.; Dievart, A.; Hsu, C.-C.; Hsiao, Y.-Y.; Chiou, S.-Y.; Huang, H.; Chen, H.-H. Post genomics era for orchid research. Bot. Stud. 2017, 58, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering plants and pteridophytes of Poland. A checklist. In Biodiversity of Poland; Mirek, Z., Ed.; W. Szafer Institute of Botany: Cracow, Poland; Polish Academy of Sciences Press: Cracow, Poland, 2002; Volume 1, p. 442. [Google Scholar]
- Storczyki, S.D. Flora Polski; Multico Oficyna Wydawnicza: Warszawa, Poland, 2009; p. 168. [Google Scholar]
- Zhang, S.; Yang, Y.; Li, J.; Qin, J.; Zhang, W.; Huang, W.; Hu, H. Physiological diversity of orchids. Plant Divers. 2018, 40, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Arditti, J. Fundamentals of Orchid Biology; John Wiley & Sons Press: New York, NY, USA, 1992; p. 692. [Google Scholar]
- Hossain, M.M. Therapeutic orchids: Traditional uses and recent advances—An overview. Fitoterapia 2011, 82, 102–140. [Google Scholar] [CrossRef] [PubMed]
- Wraith, J.; Pickering, C. Quantifying anthropogenic threats to orchids using the IUCN Red List. Ambio 2018, 47, 307–317. [Google Scholar] [CrossRef] [Green Version]
- IUCN 2020. The IUCN Red List of Threatened Species. Version 2020–3. Available online: https://www.iucnredlist.org (accessed on 6 March 2021).
- Leitch, I.J.; Kahandawala, I.; Suda, J.; Hanson, L.; Ingrouille, M.J.; Chase, M.W.; Fay, M.F. Genome size diversity in orchids: Consequences and evolution. Ann. Bot. 2009, 104, 469–481. [Google Scholar] [CrossRef]
- Leitch, I.J.; Johnston, E.; Pellicer, J.; Hidalgo, O.; Bennett, M.D. Plant DNA C-Values Database 2019. (Release 7. 1 April 2019). Available online: https://cvalues.science.kew.org/ (accessed on 6 March 2021).
- Jersáková, J.; Trávnícek, P.; Kubátová, B.; Krejciková, J.; Urfus, T.; Liu, Z.-J.; Lamb, A.; Ponert, J.; Schulte, K.; Curn, V.; et al. Genome size variation in Orchidaceae subfamily Apostasioideae: Filling the phylogenetic gap. Bot. J. Linn. Soc. 2013, 172, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Rewicz, A.; Rewers, M.; Jędrzejczyk, I.; Rewicz, T.; Kołodziejek, J.; Jakubska-Busse, A. Morphology and genome size of Epipactis helleborine (L.) Crantz (Orchidaceae) growing in anthropogenic and natural habitats. PeerJ 2018, 6, e5992. [Google Scholar] [CrossRef] [Green Version]
- Wróblewska, A.; Szczepaniak, L.; Bajguz, A.; Jędrzejczyk, I.A.; Tałałaj, I.; Ostrowiecka, B.; Brzosko, E.; Jermakowicz, E.; Mirski, P. Deceptive strategy in Dactylorhiza orchids: Multidirectional evolution of floral chemistry. Ann. Bot. 2019, 123, 1005–1016. [Google Scholar] [CrossRef]
- Fay, M.F.; Cowan, R.S.; Leitch, I.J. The effects of DNA amount on the quality and utility of AFLP fingerprints. Ann. Bot. 2005, 95, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Leitch, I.J.; Bennett, M.D. Genome size and its uses: The impact of flow cytometry. In Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes; Doležel, J., Greilhuber, J., Suda, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 153–176. [Google Scholar]
- Vinogradov, A.E. Selfish DNA is maladaptive: Evidence from the plant Red List. Trends Genet. 2003, 19, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Knight, C.A.; Molinari, N.A.; Petrov, D.A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 2005, 95, 177–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl. Acad. Sci. USA 2007, 104, 8597–8604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temsch, E.M.; Temsch, W.; Ehrendorfer-Schratt, L.; Greilhuber, J. Heavy metal pollution, selection, and genome size: The species of the Žerjav study revisited with flow cytometry. J. Bot. 2010. Article ID 596542. [Google Scholar] [CrossRef] [Green Version]
- Vidic, T.; Greilhuber, J.; Vilhar, B.; Dermastia, M. Selective significance of genome size in a plant community with heavy metal pollution. Ecol. Appl. 2009, 19, 1515–1521. [Google Scholar] [CrossRef]
- Dolezel, J.; Bartos, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 2005, 95, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hort. 2018, 30, 103–128. [Google Scholar] [CrossRef] [Green Version]
- Kaźmierczakowa, R. Polish Red List of Pteridophytes and Flowering Plants; Institute of Nature Conservation Polish Academy of Sciences: Krakow, Poland, 2016; p. 44. [Google Scholar]
- Regulation of the Minister of the Environment of October 9, 2014 on the legal protection of plant species. J. Laws 2014, 1408. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20140001409/O/D20141409.pdf (accessed on 12 April 2021).
- Jedrzejczyk, I.; Sliwinska, E. Leaves and seeds as materials for flowcytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. J. Bot. 2010. Article ID 930895. [Google Scholar] [CrossRef] [Green Version]
- Dolezel, J.; Greilhuber, J.; Lucretti, S.; Meister, A.; Lysák, M.A.; Nardi, L.; Obermayer, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998, 82, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Dolezel, J.; Sgorbati, S.; Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 1992, 85, 625–631. [Google Scholar] [CrossRef]
- Sliwinska, E.; Zielinska, E.; Jedrzejczyk, I. Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry Part A 2005, 64, 72–79. [Google Scholar] [CrossRef]
- Soltis, D.E.; Soltis, P.S.; Bennett, M.D.; Leitch, I.J. Evolution of genome size in the Angiosperms. Am. J. Bot. 2003, 90, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Veselý, P.; Bureš, P.; Šmarda, P.; Pavlicek, T. Genome size and DNA base composition of geophytes: The mirror of phenology and ecology? Ann. Bot. 2012, 109, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bou Dagher-Kharrat, M.; Abdel-Samad, N.; Douaihy, B.; Bourge, M.; Fridlender, A.; Siljak-Yakovlev, S.; Brown, S.C. Nuclear DNA C-values for biodiversity screening: Case of the Lebanese flora. Pl. Biosystems. 2013, 147, 1228–1237. [Google Scholar] [CrossRef]
- Ahmadian, M.; Babaei, A.; Ahmadi, N.; Rasoli, O. Genome size diversity of some species of Cephalanthera from Iran. Caryologia 2017, 70, 206–210. [Google Scholar] [CrossRef]
- Šmarda, P.; Bureš, P.; Horová, L.; Leitch, I.J.; Mucina, L.; Pacini, E.; Tichý, L.; Grulich, V.; Rotreklová, O. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. USA 2014, 111, E4096–E4102. [Google Scholar] [CrossRef] [Green Version]
- Siljak-Yakovlev, S.; Pustahija, F.; Šolic, E.M.; Bogunic, F.; Muratovic, E.; Bašic, N.; Catrice, O.; Brown, S.C. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Adv. Sci. Lett. 2010, 3, 190–213. [Google Scholar] [CrossRef]
- Prat, D.; Brown, S.C.; Gevaudan, A. Evolution des Neottie, apport de la cytométrie an flux. Cahiers De La Société Française D’orchidophilie 2014, 8, 122–130. [Google Scholar]
- Bai, C.; Alverson, W.S.; Follansbee, A.; Waller, D.M. New reports of nuclear DNA content for 407 U.S. plant species. Ann. Bot. 2012, 110, 1623–1629. [Google Scholar] [CrossRef]
- Vallès, J.; Bašić, N.; Bogunić, F.; Bourge, M.; Brown, S.C.; Garnatje, T.; Hajrudinović, A.; Muratović, E.; Pustahija, F.; Šolić, E.M.; et al. Contribution to plant genome size knowledge: First assessments in five genera and 30 species of angiosperms from western Balkans. Bot. Serb. 2014, 38, 25–33. [Google Scholar]
- Pustahija, F.; Brown, S.C.; Bogunic, F.; Bašic, N.; Muratovic, E.; Ollier, S.; Hidalgo, O.; Bourge, M.; Stevanovic, V.; Sijak-Yakovlev, S. Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Plant Soil. 2013, 373, 427–453. [Google Scholar] [CrossRef]
- Rewers, M.; Jedrzejczyk, I. Genetic characterization of Ocimum genus using flow cytometry and inter-simple sequence repeat markers. Ind. Crop. Prod. 2016, 91, 142–151. [Google Scholar] [CrossRef]
- Jedrzejczyk, I.; Rewers, M. Genome size and ISSR markers for Mentha L. (Lamiaceae) genetic diversity assessment and species identification. Ind. Crop. Prod. 2018, 120, 171–179. [Google Scholar] [CrossRef]
- Ducar, E.; Rewers, M.; Jędrzejczyk, I.; Martonfi, P.; Sliwinska, E. Comparison of the genome size, endoreduplication, and ISSR marker polymorphism in eight Lotus (Fabaceae) species. Turk. J. Bot. 2018, 42, 1–14. [Google Scholar] [CrossRef]
- Jedrzejczyk, I. Study on genetic diversity between Origanum L. species based on genome size and ISSR markers. Ind. Crop. Prod. 2018, 126, 201–207. [Google Scholar] [CrossRef]
- Jedrzejczyk, I.; Rewers, M. Identification and genetic diversity analysis of edible and medicinal Malva species using flow cytometry and ISSR molecular markers. Agronomy 2020, 10, 650. [Google Scholar] [CrossRef]
- Loureiro, J.; Pinto, G.; Lopes, T.; Doležel, J.; Santos, C. Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 2005, 221, 815–822. [Google Scholar] [CrossRef]
- Rupp, B.; Samuel, R.; Rusell, A.; Temsch, E.M.; Chase, M.W.; Leitch, I.J. Genome size in Polystachya (Orchidaceae) and its relationships to epidermal characters. Bot. J. Linn. Soc. 2010, 163, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Bernardos, S.; Amich, F.; Crespí, A. Karyological and taxonomical notes on three species of the genus Epipactis (Neottioideae, Orchidaceae) in the central-western Iberian peninsula. Folia Geobot. 2003, 38, 319–331. [Google Scholar] [CrossRef]
- Kliphuis, E. Cytological observations in relation to the taxonomy of the orchids of the Netherlands. Acta Bot. Neerl. 1963, 12, 172–194. [Google Scholar] [CrossRef] [Green Version]
- Rice, A.; Glick, L.; Abadi, S.; Einhorn, M.; Kopelman, N.M.; Salman-Minkov, A.; Mayzel, J.; Chay, O.; Mayrose, I. The Chromosome Counts Database (CCDB)—A community resource of plant chromosome numbers. New Phytol. 2015, 206, 19–26. Available online: http://ccdb.tau.ac.il/home/ (accessed on 6 March 2021). [CrossRef]
- Brandham, P.E. Cytogenetics—General Introduction, Apostasioideae, Cypripedioideae. In Genera Orchidacearum; Pridgeon, A.M., Cribb, P.J., Chase, M.W., Rasmussen, F.N., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 67–80. [Google Scholar]
- Kraaijeveld, K. Genome size and species diversification. Evol. Biol. 2010, 37, 227–233. [Google Scholar] [CrossRef] [Green Version]
No. | Species | Subfamily | Location | Conservation Status of the Investigated Orchids in Poland | |
---|---|---|---|---|---|
Threat Categories * | Forms of Legal Protection ** | ||||
1 | Cephalanthera damasonium (Mill.) Druce | Epidendroideae | Kielce region | NT | S |
2 | Cephalanthera longifolia (L.) Fritsch | Epidendroideae | Kaczawskie Mountains | VU | S |
3 | Cypripedium calceolus L. | Cypripedioideae | Kraków-Częstochowa Upland | VU | S |
4 | Dactylorhiza sambucina (L.) Soó | Orchidoideae | Kaczawskie Mountains | VU | S |
5 | Epipactis albensis Nováková & Rydlo | Epidendroideae | Guzice/Lower Silesia | VU | S |
6 | Epipactis atrorubens (Hoffm.) Besser | Epidendroideae | Podlachia | NT | P |
7 | Epipactis helleborine (L.) Crantz subsp. helleborine | Epidendroideae | Podlachia | - | P |
8 | Epipactis purpurata Sm. | Epidendroideae | Walkowa near Legnica | VU | S |
9 | Epipactis purpurata f. chlorophylla (Seeland) P.Delforge | Epidendroideae | Nieszczyce/Lower Silesia | VU | S |
10 | Gymnadenia conopsea (L.) R. Br. | Orchidoideae | Kaczawskie Mountains and Foothills | NT | S |
11 | Liparis loeselii (L.) Rich. | Epidendroideae | Central Poland | VU | S |
12 | Listera ovata (L.) R. Br. | Epidendroideae | Sudety Mountains | - | P |
13 | Ophrys insectifera L. | Orchidoideae | Kielce region | VU | S |
14 | Orchis mascula (L.) L. | Orchidoideae | Złoty Stok/Lower Silesia | CR | S |
15 | Orchis militaris L. | Orchidoideae | Kielce region | VU | S |
16 | Platanthera bifolia (L.) Rich. | Orchidoideae | Kraków-Częstochowa Upland | - | P |
No. | Species | DNA Content | Internal Standard ** | Genome Size Category *** | Sample CV | Previously Published 2C DNA Content | References | |
---|---|---|---|---|---|---|---|---|
2C/pg | Mbp | |||||||
1 | Cephalanthera damasonium | 38.67 ± 0.183 b* | 37,819 | 1 | large | 2.9 | 34.10 | [33] |
2 | Cephalanthera longifolia | 37.25 ± 0.077 d | 36,430 | 2 | large | 3.4 | 32.18 | [33] |
33.06 | [34] | |||||||
36.33 | [35] | |||||||
3 | Cypripedium calceolus | 82.10 ± 0.811 a | 80,294 | 2 | very large | 2.6 | 67.17 | [36] |
69.71 | [33] | |||||||
4 | Dactylorhiza sambucina | 16.16 ± 0.113 m | 15,804 | 3 | intermediate | 4.4 | 14.00 | [37] |
5 | Epipactis albensis | 27.10 ± 0.100 h | 26,504 | 1 | intermediate | 4.6 | - | - |
6 | Epipactis atrorubens | 28.59 ± 0.239 f | 27,961 | 1 | large | 3.9 | 26.59 | [38] |
7 | Epipactis helleborine subsp. helleborine | 27.89 ± 0.159 g | 27,276 | 1 | intermediate | 3.5 | 23.57 | [36] |
25.46 | [38] | |||||||
27.60 | [39] | |||||||
28.39 | [15] | |||||||
8 | Epipactis purpurata | 29.38 ± 0.210 e | 28,734 | 1 | large | 4.3 | 27.22 | [38] |
9 | Epipactis purpurata f. chlorophylla | 28.70 ± 0.084 f | 28,069 | 1 | large | 5.5 | - | - |
10 | Gymnadenia conopsea | 16.50 ± 0.173 m | 16,137 | 3 | intermediate | 3.7 | 11.01 | [37] |
11 | Liparis loeselii | 14.15 ± 0.061 n | 13,839 | 3 | intermediate | 3.1 | 13.60 | [12] |
12 | Listera ovata | 37.62 ± 0.254 c | 36,792 | 2 | large | 3.9 | 33.30 | [40] |
13 | Ophrys insectifera | 23.01 ± 0.230 k | 22,503 | 1 | intermediate | 4.3 | - | - |
14 | Orchis mascula | 20.17 ± 0.098 l | 19,726 | 3 | intermediate | 3.3 | - | - |
15 | Orchis militaris | 24.69 ± 0.359 j | 24,147 | 1 | intermediate | 4.7 | - | - |
16 | Platanthera bifolia | 25.39 ± 0.230 i | 24,831 | 1 | intermediate | 4.1 | 13.74 | [37] |
13.74 | [41] | |||||||
19.89 | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rewers, M.; Jedrzejczyk, I.; Rewicz, A.; Jakubska-Busse, A. Genome Size Diversity in Rare, Endangered, and Protected Orchids in Poland. Genes 2021, 12, 563. https://doi.org/10.3390/genes12040563
Rewers M, Jedrzejczyk I, Rewicz A, Jakubska-Busse A. Genome Size Diversity in Rare, Endangered, and Protected Orchids in Poland. Genes. 2021; 12(4):563. https://doi.org/10.3390/genes12040563
Chicago/Turabian StyleRewers, Monika, Iwona Jedrzejczyk, Agnieszka Rewicz, and Anna Jakubska-Busse. 2021. "Genome Size Diversity in Rare, Endangered, and Protected Orchids in Poland" Genes 12, no. 4: 563. https://doi.org/10.3390/genes12040563
APA StyleRewers, M., Jedrzejczyk, I., Rewicz, A., & Jakubska-Busse, A. (2021). Genome Size Diversity in Rare, Endangered, and Protected Orchids in Poland. Genes, 12(4), 563. https://doi.org/10.3390/genes12040563