Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cashmere Fiber, Blood and Tissue Collection
2.2. Screening for Sequence Polymorphism in Caprine KRTAP1-2
2.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.4. Statistical Analyses
3. Results
3.1. Identification of Caprine KRTAP1-2
3.2. Expression of Caprine KRTAP1-2 in Different Tissues
3.3. Effect of Variation in Cashmere KRTAP1-2 on Three Cashmere Fiber Traits
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, B.C.; Rogers, G.E. The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997, 78, 59–148. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Forrest, R.H.; Li, S.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G.H. Wool keratin-associated protein genes in sheep-a review. Genes 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Wang, J.; Zhou, H.; Gong, H.; Tao, J.; Hickford, J.G.H. Identification of ovine KRTAP28-1 and its association with wool weight and mean fibre diameter-associated traits. Animals 2019, 9, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, H.; Zhou, H.; Wang, J.; Li, S.; Luo, Y.; Hickford, J.G.H. Characterisation of an ovine keratin associated protein (KAP) gene, which would produce a protein rich in glycine and tyrosine, but lacking in cysteine. Genes 2019, 10, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parris, D.; Swart, L.S. Studies on the high-sulphur proteins of reduced mohair. The isolation and amino acid sequence of protein scmkb-m1.2. Biochem. J. 1975, 145, 459–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Zhou, H.; Hickford, J.G.H.; Gong, H.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Luo, Y. Variation in the caprine keratin-associated protein 15-1 (KAP15-1) gene affects cashmere fibre diameter. Arch. Anim. Breed. 2019, 62, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhou, H.; Luo, Y.; Zhao, M.; Gong, H.; Hao, Z.; Hu, J.; Hickford, J.G.H. Variation in the caprine KAP24-1 gene affects cashmere fibre diameter. Animals 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, H.; Hickford, J.G.H.; Zhao, M.; Gong, H.; Hao, Z.; Shen, J.; Hu, J.; Liu, X.; Li, S.; et al. Identification of caprine KRTAP28-1 and its effect on cashmere fiber diameter. Genes 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Zhou, H.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Jin, X.; Song, Y. Variation in the caprine keratin-associated protein 27-1 gene is associated with cashmere fiber diameter. Genes 2020, 11, 934. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, N.; Jia, C.; Zhu, X.; Jia, Z. Effect of the polymorphisms of keratin associated protein 8.2 gene on fibre traits in Inner Mongolia cashmere goats. Asian Australas. J. Anim. Sci. 2007, 20, 821–826. [Google Scholar] [CrossRef]
- Wang, J.; Che, L.; Hickford, J.G.H.; Zhou, H.; Hao, Z.; Luo, Y.; Hu, J.; Liu, X.; Li, S. Identification of the caprine keratin-associated protein 20-2 (KAP20-2) gene and its effect on cashmere traits. Genes 2017, 8, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Hao, Z.; Zhou, H.; Luo, Y.; Hu, J.; Liu, X.; Li, S.; Hickford, J.G.H. A keratin-associated protein (KAP) gene that is associated with variation in cashmere goat fleece weight. Small Rumin. Res. 2018, 167, 104–109. [Google Scholar] [CrossRef]
- Itenge-Mweza, T.O.; Forrest, R.H.J.; Mckenzie, G.W.; Hogan, A.; Abbott, J.; Amoafo, O.; Hickford, J.G.H. Polymorphism of the KAP1.1, KAP1.3 and K33 genes in Merino sheep. Mol. Cell. Probes 2007, 21, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Hickford, J.G.H. Polymorphism of the ovine keratin-associated protein 1-4 gene (KRTAP1-4). Mol. Biol. Rep. 2010, 37, 3377–3380. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Yu, Z.; Dyer, J.M.; Plowman, J.E.; Hickford, J.G.H. Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Exp. Dermatol. 2011, 20, 815–819. [Google Scholar] [CrossRef]
- Roldan, D.L.; Dodero, A.M.; Bidinost, F.; Taddeo, H.R.; Allain, D.; Poli, M.A.; Elsen, J.M. Merino sheep: A further look at quantitative trait loci for wool production. Animal 2010, 4, 1330–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, G.R.; Hickford, J.G.H.; Bickerstaffe, R. Polymorphism in two genes for B2 high sulfur proteins of wool. Anim. Genet. 1994, 25, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Visnovska, T.; Gong, H.; Schmeier, S.; Hickford, J.G.H.; Ganley, A.R.D. Contrasting patterns of coding and flanking region evolution in mammalian keratin associated protein-1 genes. Mol. Phylogenet. Evol. 2019, 133, 352–361. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Hodge, S.; Dyer, J.M.; Hickford, J.G.H. Association of wool traits with variation in the ovine KAP1-2 gene in Merino cross lambs. Small Rumin. Res. 2015, 124, 24–29. [Google Scholar] [CrossRef]
- Zhou, H.; Hickford, J.G.H.; Fang, Q. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Anal. Biochem. 2006, 354, 159–161. [Google Scholar] [CrossRef]
- Byun, S.O.; Fang, Q.; Zhou, H.; Hickford, J.G.H. An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Anal. Biochem. 2009, 385, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Hickford, J.G.H. Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep. Mol. Biol. Rep. 2011, 38, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; McKenzie, G.W.; Yu, Z.; Clerens, S.; Dyer, J.M.; Plowman, J.E.; Wright, M.W.; Arora, R.; Bawden, C.S.; et al. An updated nomenclature for keratin-associated proteins (KAPs). Int. J. Biol. Sci. 2012, 8, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, H.; Zhou, H.; McKenzie, G.W.; Hickford, J.G.H.; Luo, Y.; Clerens, S.; Dyer, J.M.; Plowman, J.E. Emerging issues with the current keratin-associated protein nomenclature. Int. J. Trichol. 2010, 2, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Zhou, H.; Plowman, J.E.; Dyer, J.M.; Hickford, J.G.H. Analysis of variation in the ovine ultra-high sulphur keratin-associated protein KAP5-4 gene using PCR-SSCP technique. Electrophoresis 2010, 31, 3545–3547. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G.H. Identification of four new gene members of the KAP6 gene family in sheep. Sci. Rep. 2016, 6, 24074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Wang, X.; Chen, H.; Wang, M.; Zhao, M.; Lan, X.; Lei, C.; Wang, K.; Lai, X.; Wang, X. The polymorphism of a novel 30bp-deletion mutation at KAP9.2 locus in the cashmere goat. Small Rumin. Res. 2008, 80, 111–115. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Zhu, J.; Hu, J.; Liu, X.; Li, S.; Luo, Y.; Hickford, J.G.H. Identification of the ovine keratin-associated protein 15-1 gene (KRTAP15-1) and genetic variation in its coding sequence. Small Rumin. Res. 2017, 153, 131–136. [Google Scholar] [CrossRef]
- Smith, G.R. Homologous recombination near and far from DNA breaks: Alternative roles and contrasting views. Annu. Rev. Genet. 2001, 35, 243–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nackley, A.G.; Shabalina, S.A.; Tchivileva, I.E.; Satterfield, K.; Korchynskyi, O.; Makarov, S.S.; Maixner, W.; Diatchenko, L. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006, 314, 1930–1933. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Wainwright, M.S.; Comeron, J.M.; Saitou, N.; Sanders, A.R.; Gelernter, J.; Gejman, P.V. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 2003, 12, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Gotea, V.; Gartner, J.J.; Qutob, N.; Elnitski, L.; Samuels, Y. The functional relevance of somatic synonymous mutations in melanoma and other cancers. Pigment Cell Melanoma Res. 2015, 28, 673–684. [Google Scholar] [CrossRef] [Green Version]
Cashmere Trait | Variant Assessed | Other Variants Fitted | Absent | Present | P Value | ||
---|---|---|---|---|---|---|---|
Mean ± SE | n | Mean ± SE | n | ||||
Raw cashmere fiber weight (g) | A | None | 407.1 ± 4.12 | 145 | 416.0 ± 4.05 | 156 | 0.075 |
B | None | 419.5 ± 3.73 | 165 | 400.0 ± 4.29 | 136 | <0.001 | |
C | None | 405.0 ± 4.80 | 108 | 414.6 ± 3.61 | 193 | 0.063 | |
A | B, C | 405.6 ± 4.71 | 145 | 412.2 ± 4.17 | 156 | 0.264 | |
B | A, C | 416.7 ± 4.52 | 165 | 401.1 ± 4.41 | 136 | 0.009 | |
C | A, B | 405.9 ± 5.19 | 108 | 411.9 ± 3.91 | 193 | 0.345 | |
Mean fiber diameter (µm) | A | None | 13.5 ± 0.04 | 145 | 13.6± 0.04 | 156 | 0.442 |
B | None | 13.7 ± 0.04 | 165 | 13.6 ± 0.04 | 136 | 0.977 | |
C | None | 13.6 ± 0.04 | 108 | 13.6 ± 0.033 | 193 | 0.357 | |
Cashmere fiber length (cm) | A | None | 4.1 ± 0.04 | 145 | 4.2 ± 0.04 | 156 | 0.099 |
B | None | 4.2 ± 0.04 | 165 | 4.2 ± 0.05 | 136 | 0.373 | |
C | None | 4.2 ± 0.05 | 108 | 4.2 ± 0.04 | 193 | 0.395 |
Genotype | Mean ± SE 1 | ||
---|---|---|---|
Raw Cashmere Fiber Weight (g) | Cashmere Fiber Length (cm) | Mean Fiber Diameter (µm) | |
AA (n = 32) | 422.8 ± 7.53 a | 4.3 ± 0.08 | 13.6 ± 0.07 |
AB (n = 50) | 408.6 ± 6.16 a | 4.2 ± 0.07 | 13.6 ± 0.06 |
AC (n = 74) | 413.9 ± 5.09 a | 4.2 ± 0.06 | 13.6 ± 0.05 |
BB (n = 26) | 369.6 ± 8.49 b | 4.1 ± 0.10 | 13.7 ± 0.08 |
BC (n = 60) | 403.4 ± 5.66 a | 4.1 ± 0.06 | 13.5 ± 0.05 |
CC (n = 59) | 423.1 ± 5.55 a | 4.2 ± 0.06 | 13.5 ± 0.05 |
P value | <0.001 | 0.165 | 0.326 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhou, H.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Zhang, K.; Zhen, H.; Hickford, J.G.H. Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats. Genes 2021, 12, 625. https://doi.org/10.3390/genes12050625
Zhao M, Zhou H, Luo Y, Wang J, Hu J, Liu X, Li S, Zhang K, Zhen H, Hickford JGH. Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats. Genes. 2021; 12(5):625. https://doi.org/10.3390/genes12050625
Chicago/Turabian StyleZhao, Mengli, Huitong Zhou, Yuzhu Luo, Jiqing Wang, Jiang Hu, Xiu Liu, Shaobin Li, Kaiwen Zhang, Huimin Zhen, and Jon G. H. Hickford. 2021. "Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats" Genes 12, no. 5: 625. https://doi.org/10.3390/genes12050625
APA StyleZhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., Li, S., Zhang, K., Zhen, H., & Hickford, J. G. H. (2021). Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats. Genes, 12(5), 625. https://doi.org/10.3390/genes12050625