Biomarkers in Different Asthma Phenotypes
Abstract
:1. Introduction
- disease symptoms (more cough, wheezing or dyspnea)
- triggers
- body shape and weight
- age of asthma onset
- etiology
- atopic status
- smoking habit
- exposure to professional irritants
- laboratory findings
- biomarkers
- lung function parameters and presence of fixed airflow obstruction
- bronchodilator reversibility
- value of fractional exhaled nitric oxide (FeNO)
- reactions to drugs or substances, especially to aspirin and nonsteroidal anti-inflammatory drugs
- response to therapy, like steroids or anticholinergics, etc.
- level of asthma control
- number of exacerbations
- level of severity, and speed of onset of asthma deterioration
- need for hospitalization or intensive care unit treatment (including mechanical ventilation)
- duration of asthma remission
- the involvement of other organ systems like skin (urticaria/eczema, atopic dermatitis), or digestive system (eosinophilic esophagitis, etc.)
2. T2-High Asthma Biomarkers
2.1. Omics
miRNA
2.2. Blood Biomarkers
2.2.1. Blood Eosinophils and Markers of Eosinophil Activation
2.2.2. Periostin
2.2.3. Dipeptidyl Peptidase-4
2.2.4. Osteopontin
2.2.5. Immunoglobulin E (IgE)
2.3. Respiratory Biomarkers
2.3.1. Exhaled Breath Analysis
2.3.2. Fractional Exhaled Nitric Oxide (FeNO)
2.4. Urine Biomarkers
2.4.1. Bromotyrosine
2.4.2. Prostaglandin D2 and Leukotriene E4
3. T2-Low Asthma Biomarkers
4. Multiple Biomarkers Are Superior to a Single Biomarker
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef]
- Reddel, H.K.; Bateman, E.D.; Becker, A.; Boulet, L.P.; Cruz, A.A.; Drazen, J.M.; Haahtela, T.; Hurd, S.S.; Inoue, H.; De Jongste, J.C.; et al. A summary of the new GINA strategy: A roadmap to asthma control. Eur. Respir. J. 2015, 46, 622–639. [Google Scholar] [CrossRef] [Green Version]
- Rackemann, F.M. A working classification of asthma. Am. J. Med. 1947, 3, 601–606. [Google Scholar] [CrossRef]
- Fajt, M.L.; Wenzel, S.E. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: The next steps toward personalized care. J. Allergy Clin. Immunol. 2015, 135, 299–310. [Google Scholar] [CrossRef]
- Chung, K.F. Precision medicine in asthma: Linking phenotypes to targeted treatments. Curr. Opin. Pulm. Med. 2018, 24, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Lotvall, J.; Akdis, C.A.; Bacharier, L.B.; Bjermer, L.; Casale, T.B.; Custovic, A.; Lemanske, R.F., Jr.; Wardlaw, A.J.; Wenzel SEGreenberg, P.A. Asthma endotypes: A new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011, 127, 355–360. [Google Scholar] [CrossRef]
- Tiotiu, A. Biomarkers in asthma: State of the art. Asthma Res. Pract. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Pavord, I.D.; Afzalnia, S.; Menzies-Gow, A.; Heaney, L.G. The current and future role of biomarkers in type 2 cytokine-mediated asthma management. Clin. Exp. Allergy 2017, 47, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Syabbalo, N. Biomarkers for Diagnosis and Management of Eosinophilic Asthma. Ann. Clin. Med. Res. 2020, 1, 1003. [Google Scholar]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Athari, S.S. Targeting cell signaling in allergic asthma. Signal Transduct. Target Ther. 2019, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, B.; Milstien, S.; Spiegel, S. ORMDL3 and allergic asthma: From physiology to pathology. J. Allergy Clin. Immunol. 2019, 144, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Chen, Q.; Pu, H.; Wei, Q.; Duan, M.; Zhang, C.; Jiang, T.; Shou, X.; Zhang, J.; Yang, Y. Adiponectin improves NF-kappaB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis. 2016, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Sopel, N.; Pflaum, A.; Kolle, J.; Finotto, S. The Unresolved Role of Interferon-lambda in Asthma Bronchiale. Front. Immunol. 2017, 8, 989. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Miao, Y.; Gao, X.; Wang, Y.Y.; Wang, H.; Zheng, Y.W.; Zhao, Z.Y. MicroRNA-200a Affects the Proliferation of Airway Smooth Muscle Cells and Airway Remodeling by Targeting FOXC1 via the PI3K/AKT Signaling Pathway in Ovalbumin-Induced Asthmatic Mice. Cell. Physiol. Biochem. 2018, 50, 2365–2389. [Google Scholar] [CrossRef]
- Pua, H.H.; Ansel, K.M. MicroRNA regulation of allergic inflammation and asthma. Curr. Opin. Immunol. 2015, 36, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Garbacki, N.; Di Valentin, E.; Geurts, P.; Irrthum, A.; Crahay, C.; Arnould, T.; Deroanne, C.; Piette, J.; Cataldo, D.; Colige, A. MicroRNAs profiling in murine models of acute and chronic asthma: A relationship with mRNAs targets. PLoS ONE 2011, 6, e16509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.X.; Sherrill, J.D.; Wen, T.; Plassard, A.J.; Besse, J.A.; Abonia, J.P.; Franciosi, J.P.; Putnam, P.E.; Eby, M.; Martin, L.J.; et al. MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J. Allergy Clin. Immunol. 2012, 129, 1064–1075.e9. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wang, M.; Li, L.; Zhang, L.; Chan, M.T.V.; Wu, W.K.K. MicroRNAs in atopic dermatitis: A systematic review. J. Cell. Mol. Med. 2020, 24, 5966–5972. [Google Scholar] [CrossRef]
- Wu, C.; Xu, K.; Wang, Z.; Chen, Z.; Sun, Z.; Yu, W.; Ji, N.; Huang, M.; Zhang, M. A novel microRNA miR-1165-3p as a potential diagnostic biomarker for allergic asthma. Biomarkers 2019, 24, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Lacedonia, D.; Palladino, G.P.; Foschino-Barbaro, M.P.; Scioscia, G.; Carpagnano, G.E. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1811–1817. [Google Scholar] [CrossRef] [Green Version]
- Boudewijn, I.M.; Roffel, M.P.; Vermeulen, C.J.; Nawijn, M.C.; Kok, K.; Terpstra, M.M.; Koppelman, G.H.; Guryev, V.; van den Berge, M. A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission. Am. J. Respir. Crit. Care Med. 2020, 202, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ye, S.; Lu, Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma. J. Clin. Lab. Anal. 2020, 34, e23023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.H.; Li, C.; Zhang, C.H.; Zhang, Z.H. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology 2020, 26, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Yao, L.; Liu, C.; Tang, L.; Xing, T. Upregulation of microRNA16 alters the response to inhaled betaagonists in patients with asthma though modulating expression of ADRB2. Mol. Med. Rep. 2019, 19, 4027–4034. [Google Scholar]
- Ramelli, S.C.; Gerthoffer, W.T. MicroRNA Targets for Asthma Therapy. Adv. Exp. Med. Biol. 2021, 1303, 89–105. [Google Scholar]
- Chung, K.F.; Israel, E.; Gibson, P.G. (Eds.) ERS Monograph. In Severe Asthma; European Respiratory Society: Lausanne, Switzerland, 2019; ISBN 978-1-84984-104-7. [Google Scholar]
- Berry, A.; Busse, W.W. Biomarkers in asthmatic patients: Has their time come to direct treatment? J. Allergy Clin. Immunol. 2016, 137, 1317–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.C.; Woodruff, P.G. Biomarkers in Severe Asthma. Immunol. Allergy Clin. N. Am. 2016, 36, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Carr, T.F.; Kraft, M. Use of biomarkers to identify phenotypes and endotypes of severe asthma. Ann. Allergy Asthma Immunol. 2018, 121, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Gao, P.; Zhi, Y.; Xu, W.; Wu, Y.; Yin, J.; Zhang, J. Periostin: Its role in asthma and its potential as a diagnostic or therapeutic target. Respir. Res. 2015, 16, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentley, J.K.; Chen, Q.; Hong, J.Y.; Popova, A.P.; Lei, J.; Moore, B.B.; Hershenson, M.B. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 2014, 134, 1433–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Meguro, K.; Kawashima, H.; Kashiwakuma, D.; Kagami, S.I.; Ohta, S.; Ono, J.; Izuhara, K.; Iwamoto, I. Serum periostin levels serve as a biomarker for both eosinophilic airway inflammation and fixed airflow limitation in well-controlled asthmatics. J. Asthma 2019, 56, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Wagener, A.H.; de Nijs, S.B.; Lutter, R.; Sousa, A.R.; Weersink, E.J.; Bel, E.H.; Sterk, P.J. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax 2015, 70, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Agache, I.; Akdis, C.; Jutel, M.; Virchow, J.C. Untangling asthma phenotypes and endotypes. Allergy 2012, 67, 835–846. [Google Scholar] [CrossRef]
- Agache, I.; Strasser, D.S.; Klenk, A.; Agache, C.; Farine, H.; Ciobanu, C.; Groenen, P.M.; Akdis, C.A. Serum IL-5 and IL-13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. Allergy 2016, 71, 1192–1202. [Google Scholar] [CrossRef]
- Tajiri, T.; Matsumoto, H.; Gon, Y.; Ito, R.; Hashimoto, S.; Izuhara, K.; Suzukawa, M.; Ohta, K.; Ono, J.; Ohta, S.; et al. Utility of serum periostin and free IgE levels in evaluating responsiveness to omalizumab in patients with severe asthma. Allergy 2016, 71, 1472–1479. [Google Scholar] [CrossRef]
- Samitas, K.; Zervas, E.; Vittorakis, S.; Semitekolou, M.; Alissafi, T.; Bossios, A.; Gogos, H.; Economidou, E.; Lötvall, J.; Xanthou, G.; et al. Osteopontinexpression and relation to disease severity in human asthma. Eur. Respir. J. 2011, 37, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rath, N.; Raje, N.; Rosenwasser, L. Immunoglobulin E as a Biomarker in Asthma. Immunol. Allergy Clin. N. Am. 2018, 38, 587–597. [Google Scholar] [CrossRef]
- Pene, J.; Rousset, F.; Briere, F.; Chretien, I.; Wideman, J.; Bonnefoy, J.Y.; De Vries, J.E. Interleukin 5 enhances interleukin 4-induced IgE production by normal human B cells. The role of soluble CD23 antigen. Eur. J. Immunol. 1988, 18, 929–935. [Google Scholar] [CrossRef]
- Semprini, R.; Shortt, N.; Ebmeier, S.; Semprini, A.; Varughese, R.; Holweg, C.T.J.; Matthews, J.G.; Fingleton, J.; Weatherall, M.; Beasley, R.; et al. Change in biomarkers of type-2 inflammation following severe exacerbations of asthma. Thorax 2019, 74, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Westerhof, G.A.; Korevaar, D.A.; Amelink, M.; de Nijs, S.B.; de Groot, J.C.; Wang, J.; Weersink, E.J.; ten Brinke, A.; Bossuyt, P.M.; Bel, E.H. Biomarkers to identify sputum eosinophilia in different adult asthma phenotypes. Eur. Respir. J. 2015, 46, 688–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontanella, S.; Frainay, C.; Murray, C.S.; Simpson, A.; Custovic, A. Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: A cross-sectional analysis within a population-based birth cohort. PLoS Med. 2018, 15, e1002691. [Google Scholar] [CrossRef] [PubMed]
- Cowan, D.C.; Taylor, D.R.; Peterson, L.E.; Cowan, J.O.; Palmay, R.; Williamson, A.; Hammel, J.; Erzurum, S.C.; Hazen, S.L.; Comhair, S. Biomarker-based asthma phenotypes of corticosteroid response. J. Allergy Clin. Immunol. 2015, 135, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaram, L.; Pizzichini, M.M.; Cook, R.J.; Boulet, L.P.; Lemière, C.; Pizzichini, E.; Cartier, A.; Hussack, P.; Goldsmith, C.H.; Laviolette, M.; et al. Determining asthma treatment by monitoring sputum cell counts: Effect on exacerbations. Eur. Respir. J. 2006, 27, 483–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleich, F.N.; Manise, M.; Sele, J.; Henket, M.; Seidel, L.; Louis, R. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm. Med. 2013, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Zaihra, T.; Walsh, C.J.; Ahmed, S.; Fugere, C.; Hamid, Q.A.; Olivenstein, R.; Martin, J.G.; Bendetti, A. Phenotyping of difficult asthma using longitudinal physiological and biomarker measurements reveals significant differences in stability between clusters. BMC Pulm. Med. 2016, 16, 74. [Google Scholar] [CrossRef] [Green Version]
- Korevaar, D.A.; Westerhof, G.A.; Wang, J.; Cohen, J.F.; Spijker, R.; Sterk, P.J.; Bel, E.H.; Bossuyt, P.M. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 290–300. [Google Scholar] [CrossRef]
- Plaza, V.; Crespo, A.; Giner, J.; Merino, J.L.; Ramos-Barbón, D.; Mateus, E.F.; Torrego, A.; Cosio, B.G.; Agustí, A.; Sibila, O. Inflammatory Asthma Phenotype Discrimination Using an Electronic Nose Breath Analyzer. J. Investig. Allergol. Clin. Immunol. 2015, 25, 431–437. [Google Scholar]
- Kostikas, K.; Koutsokera, A.; Papiris, S.; Gourgoulianis, K.I.; Loukides, S. Exhaled breath condensate in patients with asthma: Implications for application in clinical practice. Clin. Exp. Allergy 2008, 38, 557–565. [Google Scholar] [CrossRef]
- Fens, N.; Zwinderman, A.H.; van der Schee, M.P.; de Nijs, S.B.; Dijkers, E.; Roldaan, A.C.; Cheung, D.; Bel, E.H.; Sterk, P.J. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, B.; Basanta, M.; Cadden, P.; Singh, D.; Douce, D.; Woodcock, A.; Fowler, S.J. Non-invasive phenotyping using exhaled volatile organic compounds in asthma. Thorax 2011, 66, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Schee, M.P.; Palmay, R.; Cowan, J.O.; Taylor, D.R. Predicting steroid responsiveness in patients with asthma using exhaled breath profiling. Clin. Exp. Allergy 2013, 43, 1217–1225. [Google Scholar] [CrossRef]
- Pavord, I.; Bahmer, T.; Braido, F.; Cosío, B.G.; Humbert, M.; Idzko, M.; Adamek, L. Severe T2-high asthma in the biologics era: European experts’ opinion. Eur. Respir. Rev. 2019, 28, 190054. [Google Scholar] [CrossRef] [PubMed]
- Neelamegan, R.; Saka, V.; Tamilarasu, K.; Rajaram, M.; Selvarajan, S.; Chandrasekaran, A. Clinical Utility of Fractional exhaled Nitric Oxide (FeNO) as a Biomarker to Predict Severity of Disease and Response to Inhaled Corticosteroid (ICS) in Asthma Patients. J. Clin. Diagn. Res. 2016, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bommarito, L.; Migliore, E.; Bugiani, M.; Heffler, E.; Guida, G.; Bucca, C.; de Marco, R.; Rolla, G. Exhaled nitric oxide in a population sample of adults. Respiration 2008, 75, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Vitale, C.; Vatrella, A.; Molino, A.; Bianco, A.; Mazzarella, G. Fractional exhaled nitric oxide-measuring devices: Technology update. Med. Devices 2016, 9, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Price, D.B.; Bosnic-Anticevich, S.; Pavord, I.D.; Roche, N.; Halpin, D.M.G.; Bjermer, L.; Usmani, O.S.; Brusselle, G.; Ming, S.W.Y.; Rastogi, S. Association of elevated fractional exhaled nitric oxide concentration and blood eosinophil count with severe asthma exacerbations. Clin. Transl. Allergy 2019, 9, 41. [Google Scholar] [CrossRef]
- Verini, M.; Consilvio, N.P.; Di Pillo, S.; Cingolani, A.; Spagnuolo, C.; Rapino, D.; Scaparrotta, A.; Chiarelli, F. FeNO as a Marker of Airways Inflammation: The Possible Implications in Childhood Asthma Management. J. Allergy 2010, 2010, 691425. [Google Scholar] [CrossRef] [Green Version]
- Bernholm, K.F.; Homoe, A.S.; Meteran, H.; Jensen, C.B.; Porsbjerg, C.; Backer, V. FeNO-based asthma management results in faster improvement of airway hyperresponsiveness. ERJ Open Res. 2018, 4, 00147–02017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, E.A.; Massanari, M.; Hanania, N.A.; Weiner, D.J. Cost-effectiveness of fractional exhaled nitric oxide (FeNO) measurement in predicting response to omalizumab in asthma. Clin. Outcomes Res. 2019, 11, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, G.Y.; Ye, Y.M.; Yang, E.; Park, H.S. Serum potential biomarkers according to sputum inflammatory cell profiles in adult asthmatics. Korean J. Intern. Med. 2020, 35, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Specjalski, K.; Jassem, E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch. Immunol. Ther. Exp. 2019, 67, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.Y.; Horvat, J.C.; Pinkerton, J.W.; Starkey, M.R.; Essilfie, A.T.; Mayall, J.R.; Nair, P.M.; Hansbro, N.G.; Jones, B.; Haw, T.J.; et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J. Allergy Clin. Immunol. 2017, 139, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Narendra, D.; Blixt, J.; Hanania, N.A. Immunological biomarkers in severe asthma. Semin. Immunol. 2019, 46, 101332. [Google Scholar] [CrossRef]
- Samitas, K.; Zervas, E.; Gaga, M. T2-low asthma: Current approach to diagnosis and therapy. Curr. Opin. Pulm. Med. 2017, 23, 48–55. [Google Scholar] [CrossRef]
- Gibson, P.G.; Simpson, J.L.; Saltos, N. Heterogeneity of airway inflammation in persistent asthma: Evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001, 119, 1329–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.G.; Baines, K.J.; Fu, J.; Scott, H.A.; Gibson, P.G. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest 2012, 142, 86–93. [Google Scholar] [CrossRef]
- Bullens, D.M.; Truyen, E.; Coteur, L.; Dilissen, E.; Hellings, P.W.; Dupont, L.J.; Ceuppens, J.L. IL-17 mRNA in sputum of asthmatic patients: Linking T cell driven inflammation and granulocytic influx? Respir. Res. 2006, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 2013, 188, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Tinnevelt, G.H.; Kokla, M.; Hilvering, B.; van Staveren, S.; Folcarelli, R.; Xue, L.; Bloem, A.C.; Koendrman, L.; Buydens, L.M.C.; Jansen, J.J. Novel data analysis method for multicolour flow cytometry links variability of multiple markers on single cells to a clinical phenotype. Sci. Rep. 2017, 7, 5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, P.G.; Woolley, K.L.; Carty, K.; Murree-Allen, K.; Saltos, N. Induced sputum eosinophil cationic protein (ECP) measurement in asthma and chronic obstructive airway disease (COAD). Clin. Exp. Allergy 1998, 28, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Lou, W.; Fu, F. Association between osteopontin expression and asthma: A meta-analysis. J. Int. Med. Res. 2019, 47, 3513–3521. [Google Scholar] [CrossRef] [Green Version]
- Wadsworth, S.; Sin, D.; Dorscheid, D. Clinical update on the use of biomarkers of airway inflammation in the management of asthma. J. Asthma Allergy 2011, 4, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Mansur, A.H.; Srivastava, S.; Sahal, A. Disconnect of type 2 biomarkers in severe asthma; dominated by FeNO as a predictor of exacerbations and periostin as predictor of reduced lung function. Respir. Med. 2018, 143, 31–38. [Google Scholar] [CrossRef]
Asthma phenotypes according to etiology |
---|
Allergic asthma—previously extrinsic |
Non-allergic asthma—previously intrinsic |
Aspirin exacerbated respiratory disease AERD (usually connected to nasal polyposis, Samter’s triad or syndrome de Widal) |
Exercise-induced asthma |
Occupational asthma |
Asthma phenotypes according to clinical characteristics |
Obesity-related asthma |
Smoking-associated asthma |
Cough variant asthma |
Persistent asthma |
Intermittent asthma |
Premenstrual asthma |
Preschool asthma |
Post-puberty asthma |
Early-onset asthma |
Infantile asthma |
Late-onset asthma |
Very late-onset asthma |
Exacerbations-prone asthma |
Atypical asthma |
Classic asthma |
Asthma phenotypes with underlying diseases |
Eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome) |
Allergic bronchopulmonary mycosis (ABPM) |
Asthma with bronchiectasis |
Asthma with immunodeficiency |
Asthma with α-1 antitrypsin deficiency (AATD) |
Asthma phenotypes according to pulmonary function results |
Reversible asthma (with normalization of lung function) |
Asthma with fixed airway obstruction (FAO) |
Asthma with non-reversible airflow limitation (negative bronchodilatortest to salbutamol) |
Restrictive ventilatory disorders such as asthma |
Airway hyperresponsiveness |
Asthma with a high inflammatory component (measured by fractional exhaled nitric oxide FeNO) |
Asthma with a low inflammatory component (measured by fractional exhaled nitric oxide FeNO) |
Brittle asthma (wide variation of peak expiratory flow (PEF)) |
Asthma phenotype according to cellular composition of airway inflammation |
Eosinophilic asthma |
Neutrophilic asthma |
Mixed asthma |
Paucigranulocytic asthma |
Asthma phenotypes based on treatment response and level of asthma control |
Severe asthma |
Difficult–to-treat asthma |
Refractory asthma |
Treatment-resistant asthma |
Problematic asthma |
Uncontrolled asthma |
Steroid-resistant asthma |
Steroid-dependent asthma |
Asthma with a history of respiratory failure and/or intubation and mechanical ventilation |
Mild asthma |
Benign asthma |
Asthma phenotypes based on the level of type 2 cytokine profile (modern approach) |
T2 high asthma |
T2-low (or non T2-high) |
Asthma phenotypes according to etiology |
Allergic asthma—previously extrinsic |
Non-allergic asthma—previously intrinsic |
Aspirin exacerbated respiratory disease AERD (usually connected to nasal polyposis, Samter’s triad or Syndrome de Widal) |
Exercise-induced asthma |
Occupational asthma |
Examples of T2-High Asthma Biomarkers | |
---|---|
Omics | ALPL, CLC, CPA3, CXCR2, DNASElL3, PGD2-CRTH2, ORMDL3, PI3K/AKT, IL-4-IL-13-JAK-STAT-MAPK, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, FOXC1-miR-PI3K/AKT |
miRNA | miR-21, miR-135a, miR-142, miR-143, miR-146b, miR-193b and miR-223, miR-365, miR-375, miR-452, miR-1165-3p |
Blood biomarkers | Eosinophils, ECP, EDN Periostin DPP-4 Osteopontin IgE |
Respiratory biomarkers | Sputum analysis Exhaled breath analysis FeNO |
Urine biomarkers | Bromotyrosine PGD2, PGE2, leukotriene E4 |
Biologics for Severe (T2-High) Asthma | |
---|---|
Target | Drug |
IL-4 receptor | Dupilumab |
IL-5 | Mepolizumab Reslizumab |
IL-5 receptor | Benralizumab |
IgE | Omalizumab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović-Grle, S.; Štajduhar, A.; Lampalo, M.; Rnjak, D. Biomarkers in Different Asthma Phenotypes. Genes 2021, 12, 801. https://doi.org/10.3390/genes12060801
Popović-Grle S, Štajduhar A, Lampalo M, Rnjak D. Biomarkers in Different Asthma Phenotypes. Genes. 2021; 12(6):801. https://doi.org/10.3390/genes12060801
Chicago/Turabian StylePopović-Grle, Sanja, Anamarija Štajduhar, Marina Lampalo, and Dina Rnjak. 2021. "Biomarkers in Different Asthma Phenotypes" Genes 12, no. 6: 801. https://doi.org/10.3390/genes12060801
APA StylePopović-Grle, S., Štajduhar, A., Lampalo, M., & Rnjak, D. (2021). Biomarkers in Different Asthma Phenotypes. Genes, 12(6), 801. https://doi.org/10.3390/genes12060801