Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis
Abstract
:1. Introduction
2. Causes of Variability of CF Lung Disease
2.1. The Role of the Underlying CFTR Genotype
2.2. Identification of Modifier Genes
2.3. Identification of Epigenetic Modifications
2.4. Impact of Age at Diagnosis and Mode of Diagnosis on Variability of Early CF Lung Disease
2.5. Role of Environmental Factors
3. Methods to Detect and Quantify Early CF Lung Disease
3.1. Investigation of Early Lung Function in Children with CF
3.2. Quantification of Morphological Changes Due to CF Lung Disease
3.3. Detection of Lung Perfusion Defects by MRI
3.4. Evaluation of Pulmonary Infection and Inflammation
4. Consequences of Variability of Early CF Lung Disease and Ability of Quantification
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sources of Support
References
- Collins, F.S. Cystic fibrosis: Molecular biology and therapeutic implications. Science 1992, 256, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef]
- Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N.; et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065. [Google Scholar] [CrossRef]
- cftr2.org. The Clinical and Functional TRanslation of CFTR (CFTR2). 2021. Available online: https://cftr2.org/ (accessed on 13 February 2021).
- Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016, 27, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Welsh, M.J.; Smith, A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993, 73, 1251–1254. [Google Scholar] [CrossRef]
- Koch, C.; Cuppens, H.; Rainisio, M.; Madessani, U.; Harms, H.; Hodson, M.; Mastella, G.; Navarro, J.; Strandvik, B.; McKenzie, S.; et al. European Epidemiologic Registry of Cystic Fibrosis (ERCF): Comparison of major disease manifestations between patients with different classes of mutations. Pediatric Pulmonol. 2001, 31, 1–12. [Google Scholar] [CrossRef]
- Mall, M.A.; Hartl, D. CFTR: Cystic fibrosis and beyond. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2014, 44, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Rowe, S.M.; Miller, S.; Sorscher, E.J. Cystic fibrosis. N. Engl. J. Med. 2005, 352, 1992–2001. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.L.; Burns, J.L.; Ramsey, B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003, 168, 918–951. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Boucher, R.C. Pathophysiology of Cystic Fibrosis Lung Disease; Mall, M.A., Elborn, J.S., Eds.; European Respiratory Society: Sheffield, UK, 2014; pp. 1–13. [Google Scholar]
- Montgomery, S.T.; Mall, M.A.; Kicic, A.; Stick, S.M.; Arest, C.F. Hypoxia and sterile inflammation in cystic fibrosis airways: Mechanisms and potential therapies. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Balazs, A.; Mall, M.A. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatric Pulmonol. 2019, 54 (Suppl. 3), S5–S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou-Suckow, Z.; Duerr, J.; Hagner, M.; Agrawal, R.; Mall, M.A. Airway mucus, inflammation and remodeling: Emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res. 2017, 367, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.A.; Ranganathan, S.; Park, J.; Skoric, B.; Adams, A.M.; Simpson, S.J.; Robins-Browne, R.M.; Franklin, P.J.; de Klerk, N.H.; Sly, P.D.; et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Frey, D.L.; Boutin, S.; Dittrich, S.A.; Graeber, S.Y.; Stahl, M.; Wege, S.; Herth, F.J.F.; Sommerburg, O.; Schultz, C.; Mall, M.A.; et al. Relationship between airway dysbiosis, inflammation and lung function in adults with cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2021. print. [Google Scholar] [CrossRef]
- Grasemann, H.; Ratjen, F. Early lung disease in cystic fibrosis. Lancet Respir. Med. 2013, 1, 148–157. [Google Scholar] [CrossRef]
- Sly, P.D.; Brennan, S.; Gangell, C.; de Klerk, N.; Murray, C.; Mott, L.; Stick, S.M.; Robinson, P.J.; Robertson, C.F.; Ranganathan, S.C. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am. J. Respir. Crit. Care Med. 2009, 180, 146–152. [Google Scholar] [CrossRef]
- Esther, C.R., Jr.; Muhlebach, M.S.; Ehre, C.; Hill, D.B.; Wolfgang, M.C.; Kesimer, M.; Ramsey, K.A.; Markovetz, M.R.; Garbarine, I.C.; Forest, M.G.; et al. Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Muhlebach, M.S.; Zorn, B.T.; Esther, C.R.; Hatch, J.E.; Murray, C.P.; Turkovic, L.; Ranganathan, S.C.; Boucher, R.C.; Stick, S.M.; Wolfgang, M.C. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog. 2018, 14, e1006798. [Google Scholar] [CrossRef]
- Davies, J.C.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Robertson, S.; Green, Y.; Cooke, J.; et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): An open-label, single-arm study. Lancet Respir. Med. 2016, 4, 107–115. [Google Scholar] [CrossRef]
- McNamara, J.J.; McColley, S.A.; Marigowda, G.; Liu, F.; Tian, S.; Owen, C.A.; Stiles, D.; Li, C.; Waltz, D.; Wang, L.T.; et al. Safety, pharmacokinetics, and pharmacodynamics of lumacaftor and ivacaftor combination therapy in children aged 2-5 years with cystic fibrosis homozygous for F508del-CFTR: An open-label phase 3 study. Lancet Respir. Med. 2019, 7, 325–335. [Google Scholar] [CrossRef]
- Ratjen, F.; Davis, S.D.; Stanojevic, S.; Kronmal, R.A.; Hinckley Stukovsky, K.D.; Jorgensen, N.; Rosenfeld, M.; Group, S.S. Inhaled hypertonic saline in preschool children with cystic fibrosis (SHIP): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2019, 7, 802–809. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Ratjen, F.; Brumback, L.; Daniel, S.; Rowbotham, R.; McNamara, S.; Johnson, R.; Kronmal, R.; Davis, S.D. Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: The ISIS randomized controlled trial. JAMA J. Am. Med. Assoc. 2012, 307, 2269–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, M.; Wainwright, C.E.; Higgins, M.; Wang, L.T.; McKee, C.; Campbell, D.; Tian, S.; Schneider, J.; Cunningham, S.; Davies, J.C.; et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): A phase 3 single-arm study. Lancet Respir. Med. 2018, 6, 545–553. [Google Scholar] [CrossRef]
- Stahl, M.; Wielputz, M.O.; Ricklefs, I.; Dopfer, C.; Barth, S.; Schlegtendal, A.; Graeber, S.Y.; Sommerburg, O.; Diekmann, G.; Husing, J.; et al. Preventive Inhalation of Hypertonic Saline in Infants with Cystic Fibrosis (PRESIS). A Randomized, Double-Blind, Controlled Study. Am. J. Respir. Crit. Care Med. 2019, 199, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Hoo, A.F.; Thia, L.P.; Nguyen, T.T.; Bush, A.; Chudleigh, J.; Lum, S.; Ahmed, D.; Lynn, I.B.; Carr, S.B.; Chavasse, R.J.; et al. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax 2012, 67, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, K.A.; Rosenow, T.; Turkovic, L.; Skoric, B.; Banton, G.; Adams, A.M.; Simpson, S.J.; Murray, C.; Ranganathan, S.C.; Stick, S.M.; et al. Lung Clearance Index and Structural Lung Disease on Computed Tomography in Early Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2016, 193, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Wielputz, M.O.; Graeber, S.Y.; Joachim, C.; Sommerburg, O.; Kauczor, H.U.; Puderbach, M.; Eichinger, M.; Mall, M.A. Comparison of Lung Clearance Index and Magnetic Resonance Imaging for Assessment of Lung Disease in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2017, 195, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.; Stocks, J.; Thia, L.P.; Hoo, A.F.; Bush, A.; Aurora, P.; Brennan, L.; Lee, S.; Lum, S.; Cottam, P.; et al. Pulmonary function deficits in newborn screened infants with cystic fibrosis managed with standard UK care are mild and transient. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2017, 50. [Google Scholar] [CrossRef] [Green Version]
- Simpson, S.J.; Ranganathan, S.; Park, J.; Turkovic, L.; Robins-Browne, R.M.; Skoric, B.; Ramsey, K.A.; Rosenow, T.; Banton, G.L.; Berry, L.; et al. Progressive ventilation inhomogeneity in infants with cystic fibrosis after pulmonary infection. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2015, 46, 1680–1690. [Google Scholar] [CrossRef]
- Mott, L.S.; Park, J.; Murray, C.P.; Gangell, C.L.; de Klerk, N.H.; Robinson, P.J.; Robertson, C.F.; Ranganathan, S.C.; Sly, P.D.; Stick, S.M.; et al. Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax 2012, 67, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Sly, P.D.; Gangell, C.L.; Chen, L.; Ware, R.S.; Ranganathan, S.; Mott, L.S.; Murray, C.P.; Stick, S.M. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 2013, 368, 1963–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekus, F.; Ballmann, M.; Bronsveld, I.; Bijman, J.; Veeze, H.; Tummler, B. Categories of deltaF508 homozygous cystic fibrosis twin and sibling pairs with distinct phenotypic characteristics. Twin Res. 2000, 3, 277–293. [Google Scholar] [CrossRef] [PubMed]
- McKone, E.F.; Goss, C.H.; Aitken, M.L. CFTR genotype as a predictor of prognosis in cystic fibrosis. Chest 2006, 130, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Aaron, S.D.; Stephenson, A.L.; Cameron, D.W.; Whitmore, G.A. A statistical model to predict one-year risk of death in patients with cystic fibrosis. J. Clin. Epidemiol. 2015, 68, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Kerem, E.; Corey, M.; Kerem, B.S.; Rommens, J.; Markiewicz, D.; Levison, H.; Tsui, L.C.; Durie, P. The relation between genotype and phenotype in cystic fibrosis--analysis of the most common mutation (delta F508). N. Engl. J. Med. 1990, 323, 1517–1522. [Google Scholar] [CrossRef] [Green Version]
- McCague, A.F.; Raraigh, K.S.; Pellicore, M.J.; Davis-Marcisak, E.F.; Evans, T.A.; Han, S.T.; Lu, Z.; Joynt, A.T.; Sharma, N.; Castellani, C.; et al. Correlating Cystic Fibrosis Transmembrane Conductance Regulator Function with Clinical Features to Inform Precision Treatment of Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 1116–1126. [Google Scholar] [CrossRef]
- Sanders, D.B.; Li, Z.; Laxova, A.; Rock, M.J.; Levy, H.; Collins, J.; Ferec, C.; Farrell, P.M. Risk factors for the progression of cystic fibrosis lung disease throughout childhood. Ann. Am. Thorac. Soc. 2014, 11, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerem, B.; Kerem, E. The molecular basis for disease variability in cystic fibrosis. Eur. J. Hum. Genet. 1996, 4, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Wilschanski, M.; Zielenski, J.; Markiewicz, D.; Tsui, L.C.; Corey, M.; Levison, H.; Durie, P.R. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J. Pediatrics 1995, 127, 705–710. [Google Scholar] [CrossRef]
- Hirtz, S.; Gonska, T.; Seydewitz, H.H.; Thomas, J.; Greiner, P.; Kuehr, J.; Brandis, M.; Eichler, I.; Rocha, H.; Lopes, A.I.; et al. CFTR Cl- channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 2004, 127, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Vanscoy, L.L.; Blackman, S.M.; Collaco, J.M.; Bowers, A.; Lai, T.; Naughton, K.; Algire, M.; McWilliams, R.; Beck, S.; Hoover-Fong, J.; et al. Heritability of lung disease severity in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007, 175, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, I.B.; Hizal, M.; Emiralioglu, N.; Ozcelik, U.; Yalcin, E.; Dogru, D.; Kiper, N.; Dayangac-Erden, D. Differentially expressed genes associated with disease severity in siblings with cystic fibrosis. Pediatric Pulmonol. 2021, 56, 910–920. [Google Scholar] [CrossRef]
- Macgregor, A.R.; Rhaney, K. Congenital fibrocystic disease of the pancreas; a report of two proved cases of dissimilar clinical types in siblings. Arch. Dis. Child. 1948, 23, 56–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terlizzi, V.; Lucarelli, M.; Salvatore, D.; Angioni, A.; Bisogno, A.; Braggion, C.; Buzzetti, R.; Carnovale, V.; Casciaro, R.; Castaldo, G.; et al. Clinical expression of cystic fibrosis in a large cohort of Italian siblings. BMC Pulm. Med. 2018, 18, 196. [Google Scholar] [CrossRef]
- Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schluchter, M.D.; Konstan, M.W.; Drumm, M.L.; Yankaskas, J.R.; Knowles, M.R. Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data. Am. J. Respir. Crit. Care Med. 2006, 174, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Shanthikumar, S.; Neeland, M.N.; Saffery, R.; Ranganathan, S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatric Pulmonol. 2019, 54, 1356–1366. [Google Scholar] [CrossRef]
- Drumm, M.L.; Konstan, M.W.; Schluchter, M.D.; Handler, A.; Pace, R.; Zou, F.; Zariwala, M.; Fargo, D.; Xu, A.; Dunn, J.M.; et al. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 2005, 353, 1443–1453. [Google Scholar] [CrossRef]
- Corvol, H.; Blackman, S.M.; Boelle, P.Y.; Gallins, P.J.; Pace, R.G.; Stonebraker, J.R.; Accurso, F.J.; Clement, A.; Collaco, J.M.; Dang, H.; et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat. Commun. 2015, 6, 8382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutful Kabir, F.; Ambalavanan, N.; Liu, G.; Li, P.; Solomon, G.M.; Lal, C.V.; Mazur, M.; Halloran, B.; Szul, T.; Gerthoffer, W.T.; et al. MicroRNA-145 Antagonism Reverses TGF-β Inhibition of F508del CFTR Correction in Airway Epithelia. Am. J. Respir. Crit. Care Med. 2018, 197, 632–643. [Google Scholar] [CrossRef]
- Stanke, F.; Hector, A.; Hedtfeld, S.; Hartl, D.; Griese, M.; Tummler, B.; Mall, M.A. An informative intragenic microsatellite marker suggests the IL-1 receptor as a genetic modifier in cystic fibrosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2017, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritzsching, B.; Zhou-Suckow, Z.; Trojanek, J.B.; Schubert, S.C.; Schatterny, J.; Hirtz, S.; Agrawal, R.; Muley, T.; Kahn, N.; Sticht, C.; et al. Hypoxic epithelial necrosis triggers neutrophilic inflammation via IL-1 receptor signaling in cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2015, 191, 902–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, S.T.; Dittrich, A.S.; Garratt, L.W.; Turkovic, L.; Frey, D.L.; Stick, S.M.; Mall, M.A.; Kicic, A.; Arest, C.F. Interleukin-1 is associated with inflammation and structural lung disease in young children with cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2018, 17, 715–722. [Google Scholar] [CrossRef]
- Scott, M.; De Sario, A. DNA methylation changes in cystic fibrosis: Cause or consequence? Clin. Genet. 2020, 98, 3–9. [Google Scholar] [CrossRef]
- Ding, N.; Maiuri, A.R.; O’Hagan, H.M. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. Mutat. Res. 2019, 780, 69–81. [Google Scholar] [CrossRef]
- Magalhaes, M.; Rivals, I.; Claustres, M.; Varilh, J.; Thomasset, M.; Bergougnoux, A.; Mely, L.; Leroy, S.; Corvol, H.; Guillot, L.; et al. DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis. Clin. Epigenetics 2017, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Pittman, J.E.; Wylie, K.M.; Akers, K.; Storch, G.A.; Hatch, J.; Quante, J.; Frayman, K.B.; Clarke, N.; Davis, M.; Stick, S.M.; et al. Association of Antibiotics, Airway Microbiome, and Inflammation in Infants with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2017, 14, 1548–1555. [Google Scholar] [CrossRef]
- Cohen, T.S.; Prince, A. Cystic fibrosis: A mucosal immunodeficiency syndrome. Nat. Med. 2012, 18, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.S.; Abbott, M.A.; Wakefield, D.B.; Lapin, C.D.; Drapeau, G.; Hopfer, S.M.; Greenstein, R.M.; Cloutier, M.M. Improved pulmonary and growth outcomes in cystic fibrosis by newborn screening. Pediatric Pulmonol. 2008, 43, 648–655. [Google Scholar] [CrossRef] [PubMed]
- McKay, K.O.; Waters, D.L.; Gaskin, K.J. The influence of newborn screening for cystic fibrosis on pulmonary outcomes in new South Wales. J. Pediatrics 2005, 147, S47–S50. [Google Scholar] [CrossRef] [PubMed]
- Stick, S.M.; Brennan, S.; Murray, C.; Douglas, T.; von Ungern-Sternberg, B.S.; Garratt, L.W.; Gangell, C.L.; De Klerk, N.; Linnane, B.; Ranganathan, S.; et al. Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J. Pediatr. 2009, 155, 623–628.e621. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; Kosorok, M.R.; Laxova, A.; Shen, G.; Koscik, R.E.; Bruns, W.T.; Splaingard, M.; Mischler, E.H. Nutritional benefits of neonatal screening for cystic fibrosis. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. N. Engl. J. Med. 1997, 337, 963–969. [Google Scholar] [CrossRef]
- Farrell, P.M.; Kosorok, M.R.; Rock, M.J.; Laxova, A.; Zeng, L.; Lai, H.C.; Hoffman, G.; Laessig, R.H.; Splaingard, M.L. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Pediatrics 2001, 107, 1–13. [Google Scholar] [CrossRef]
- Lai, H.J.; Cheng, Y.; Cho, H.; Kosorok, M.R.; Farrell, P.M. Association between initial disease presentation, lung disease outcomes, and survival in patients with cystic fibrosis. Am. J. Epidemiol. 2004, 159, 537–546. [Google Scholar] [CrossRef]
- Stahl, M.; Steinke, E.; Seitz, C.; Joachim, C.; Kauczor, H.; Eichinger, M.; Hämmerling, S.; Sommerburg, O.; Wielpütz, M.; Mall, M.A. Progression of lung disease detected by MRI and impact of NBS in preschool children with cystic fibrosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2019, 54, OA2130. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; Kahle, J.S.; O’Sullivan, A.K.; Sikirica, S.; Hodgkins, P.S. Cystic fibrosis in young children: A review of disease manifestation, progression, and response to early treatment. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2016, 15, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Pezzulo, A.A.; Tang, X.X.; Hoegger, M.J.; Abou Alaiwa, M.H.; Ramachandran, S.; Moninger, T.O.; Karp, P.H.; Wohlford-Lenane, C.L.; Haagsman, H.P.; van Eijk, M.; et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 2012, 487, 109–113. [Google Scholar] [CrossRef]
- Zemanick, E.T.; Emerson, J.; Thompson, V.; McNamara, S.; Morgan, W.; Gibson, R.L.; Rosenfeld, M.; Group, E.S. Clinical outcomes after initial pseudomonas acquisition in cystic fibrosis. Pediatric Pulmonol. 2015, 50, 42–48. [Google Scholar] [CrossRef]
- Sanders, D.B.; Emerson, J.; Ren, C.L.; Schechter, M.S.; Gibson, R.L.; Morgan, W.; Rosenfeld, M.; Group, E.S. Early Childhood Risk Factors for Decreased FEV1 at Age Six to Seven Years in Young Children with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2015, 12, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.B.; Bittner, R.C.; Rosenfeld, M.; Hoffman, L.R.; Redding, G.J.; Goss, C.H. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am. J. Respir. Crit. Care Med. 2010, 182, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, D.B.; Goss, C.H. Pulmonary exacerbations as indicators of progression of lung disease in young children with CF. Thorax 2013, 68, 608–609. [Google Scholar] [CrossRef] [Green Version]
- Waters, V.; Stanojevic, S.; Atenafu, E.G.; Lu, A.; Yau, Y.; Tullis, E.; Ratjen, F. Effect of pulmonary exacerbations on long-term lung function decline in cystic fibrosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2012, 40, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, C.A.; Vidmar, S.; Cheney, J.L.; Carlin, J.B.; Armstrong, D.S.; Cooper, P.J.; Grimwood, K.; Moodie, M.; Robertson, C.F.; Rosenfeld, M.; et al. Prospective evaluation of respiratory exacerbations in children with cystic fibrosis from newborn screening to 5 years of age. Thorax 2013, 68, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.C.; Robinson, P.J. Exacerbations in cystic fibrosis: 2. prevention. Thorax 2007, 62, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Flume, P.A.; O’Sullivan, B.P.; Robinson, K.A.; Goss, C.H.; Mogayzel, P.J., Jr.; Willey-Courand, D.B.; Bujan, J.; Finder, J.; Lester, M.; Quittell, L.; et al. Cystic fibrosis pulmonary guidelines: Chronic medications for maintenance of lung health. Am. J. Respir. Crit. Care Med. 2007, 176, 957–969. [Google Scholar] [CrossRef]
- Wat, D.; Gelder, C.; Hibbitts, S.; Cafferty, F.; Bowler, I.; Pierrepoint, M.; Evans, R.; Doull, I. The role of respiratory viruses in cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2008, 7, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Deschamp, A.R.; Hatch, J.E.; Slaven, J.E.; Gebregziabher, N.; Storch, G.; Hall, G.L.; Stick, S.; Ranganathan, S.; Ferkol, T.W.; Davis, S.D. Early respiratory viral infections in infants with cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2019, 18, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Goss, C.H.; Newsom, S.A.; Schildcrout, J.S.; Sheppard, L.; Kaufman, J.D. Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2004, 169, 816–821. [Google Scholar] [CrossRef] [Green Version]
- Kopp, B.T.; Sarzynski, L.; Khalfoun, S.; Hayes, D., Jr.; Thompson, R.; Nicholson, L.; Long, F.; Castile, R.; Groner, J. Detrimental effects of secondhand smoke exposure on infants with cystic fibrosis. Pediatric Pulmonol. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Ramsay, K.A.; Stockwell, R.E.; Bell, S.C.; Kidd, T.J. Infection in cystic fibrosis: Impact of the environment and climate. Expert Rev. Respir. Med. 2016, 10, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Kopp, B.T.; Thompson, R.; Kim, J.; Konstan, R.; Diaz, A.; Smith, B.; Shrestha, C.; Rogers, L.K.; Hayes, D., Jr.; Tumin, D.; et al. Secondhand smoke alters arachidonic acid metabolism and inflammation in infants and children with cystic fibrosis. Thorax 2019, 74, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Farhat, S.C.L.; Almeida, M.B.; Silva-Filho, L.; Farhat, J.; Rodrigues, J.C.; Braga, A.L.F. Ozone is associated with an increased risk of respiratory exacerbations in patients with cystic fibrosis. Chest 2013, 144, 1186–1192. [Google Scholar] [CrossRef]
- Goeminne, P.C.; Kicinski, M.; Vermeulen, F.; Fierens, F.; De Boeck, K.; Nemery, B.; Nawrot, T.S.; Dupont, L.J. Impact of air pollution on cystic fibrosis pulmonary exacerbations: A case-crossover analysis. Chest 2013, 143, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Warrier, R.; Skoric, B.; Vidmar, S.; Carzino, R.; Ranganathan, S. The role of geographical location and climate on recurrent Pseudomonas infection in young children with Cystic Fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2019, 18, 817–822. [Google Scholar] [CrossRef]
- Raju, S.V.; Lin, V.Y.; Liu, L.; McNicholas, C.M.; Karki, S.; Sloane, P.A.; Tang, L.; Jackson, P.L.; Wang, W.; Wilson, L.; et al. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am. J. Respir. Cell Mol. Biol. 2017, 56, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Clunes, L.A.; Davies, C.M.; Coakley, R.D.; Aleksandrov, A.A.; Henderson, A.G.; Zeman, K.L.; Worthington, E.N.; Gentzsch, M.; Kreda, S.M.; Cholon, D.; et al. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J. 2012, 26, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Marklew, A.J.; Patel, W.; Moore, P.J.; Tan, C.D.; Smith, A.J.; Sassano, M.F.; Gray, M.A.; Tarran, R. Cigarette Smoke Exposure Induces Retrograde Trafficking of CFTR to the Endoplasmic Reticulum. Sci. Rep. 2019, 9, 13655. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.E.; Sheridan, J.T.; Polk, W.; Davies, C.M.; Tarran, R. Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J. Biol. Chem. 2014, 289, 7671–7681. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Conlon, T.M.; Ballester Lopez, C.; Seimetz, M.; Bednorz, M.; Zhou-Suckow, Z.; Weissmann, N.; Eickelberg, O.; Mall, M.A.; Yildirim, A.O. Cigarette smoke causes acute airway disease and exacerbates chronic obstructive lung disease in neonatal mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L602–L610. [Google Scholar] [CrossRef]
- Collaco, J.M.; Vanscoy, L.; Bremer, L.; McDougal, K.; Blackman, S.M.; Bowers, A.; Naughton, K.; Jennings, J.; Ellen, J.; Cutting, G.R. Interactions between secondhand smoke and genes that affect cystic fibrosis lung disease. JAMA J. Am. Med. Assoc. 2008, 299, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillarisetti, N.; Williamson, E.; Linnane, B.; Skoric, B.; Robertson, C.F.; Robinson, P.; Massie, J.; Hall, G.L.; Sly, P.; Stick, S.; et al. Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 75–81. [Google Scholar] [CrossRef]
- Mall, M.A.; Stahl, M.; Graeber, S.Y.; Sommerburg, O.; Kauczor, H.U.; Wielputz, M.O. Early detection and sensitive monitoring of CF lung disease: Prospects of improved and safer imaging. Pediatric Pulmonol. 2016, 51, S49–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, P.M.; de Jong, P.A.; Tiddens, H.A.; Lindblad, A. Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax 2008, 63, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lum, S.; Gustafsson, P.; Ljungberg, H.; Hulskamp, G.; Bush, A.; Carr, S.B.; Castle, R.; Hoo, A.F.; Price, J.; Ranganathan, S.; et al. Early detection of cystic fibrosis lung disease: Multiple-breath washout versus raised volume tests. Thorax 2007, 62, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, M.; Graeber, S.Y.; Joachim, C.; Barth, S.; Ricklefs, I.; Diekmann, G.; Kopp, M.V.; Naehrlich, L.; Mall, M.A. Three-center feasibility of lung clearance index in infants and preschool children with cystic fibrosis and other lung diseases. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2018, 17, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, M.; Joachim, C.; Blessing, K.; Hämmerling, S.; Sommerburg, O.; Latzin, P.; Mall, M.A. Multiple breath washout is feasible in the clinical setting and detects abnormal lung function in infants and young children with cystic fibrosis. Respir. Int. Rev. Thorac. Dis. 2014, 87, 357–363. [Google Scholar] [CrossRef]
- Amin, R.; Subbarao, P.; Jabar, A.; Balkovec, S.; Jensen, R.; Kerrigan, S.; Gustafsson, P.; Ratjen, F. Hypertonic saline improves the LCI in paediatric patients with CF with normal lung function. Thorax 2010, 65, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Amin, R.; Subbarao, P.; Lou, W.; Jabar, A.; Balkovec, S.; Jensen, R.; Kerrigan, S.; Gustafsson, P.; Ratjen, F. The effect of dornase alfa on ventilation inhomogeneity in patients with cystic fibrosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2011, 37, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Aurora, P.; Bush, A.; Gustafsson, P.; Oliver, C.; Wallis, C.; Price, J.; Stroobant, J.; Carr, S.; Stocks, J. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2005, 171, 249–256. [Google Scholar] [CrossRef]
- Belessis, Y.; Dixon, B.; Hawkins, G.; Pereira, J.; Peat, J.; MacDonald, R.; Field, P.; Numa, A.; Morton, J.; Lui, K.; et al. Early cystic fibrosis lung disease detected by bronchoalveolar lavage and lung clearance index. Am. J. Respir. Crit. Care Med. 2012, 185, 862–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Sheridan, H.; Bell, N.; Cunningham, S.; Davis, S.D.; Elborn, J.S.; Milla, C.E.; Starner, T.D.; Weiner, D.J.; Lee, P.S.; et al. Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: A randomised controlled trial. Lancet Respir. Med. 2013, 1, 630–638. [Google Scholar] [CrossRef]
- Stahl, M.; Joachim, C.; Kirsch, I.; Uselmann, T.; Yu, Y.; Alfeis, N.; Berger, C.; Minso, R.; Rudolf, I.; Stolpe, C.; et al. Multicentre feasibility of multiple-breath washout in preschool children with cystic fibrosis and other lung diseases. ERJ Open Res. 2020, 6, 00408–02020. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, P.; Stanojevic, S.; Brown, M.; Jensen, R.; Rosenfeld, M.; Davis, S.; Brumback, L.; Gustafsson, P.; Ratjen, F. Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am. J. Respir. Crit. Care Med. 2013, 188, 456–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, R.; Blum, A.; Schibler, A.; Ammann, R.A.; Gallati, S. Ventilation inhomogeneities in relation to standard lung function in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2005, 171, 371–378. [Google Scholar] [CrossRef]
- Aurora, P.; Stanojevic, S.; Wade, A.; Oliver, C.; Kozlowska, W.; Lum, S.; Bush, A.; Price, J.; Carr, S.B.; Shankar, A.; et al. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Downing, B.; Irving, S.; Bingham, Y.; Fleming, L.; Bush, A.; Saglani, S. Feasibility of lung clearance index in a clinical setting in pre-school children. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2016, 48, 1074–1080. [Google Scholar] [CrossRef]
- Fuchs, S.I.; Sturz, J.; Junge, S.; Ballmann, M.; Gappa, M. A novel sidestream ultrasonic flow sensor for multiple breath washout in children. Pediatric Pulmonol. 2008, 43, 731–738. [Google Scholar] [CrossRef]
- Gustafsson, P.M.; Aurora, P.; Lindblad, A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2003, 22, 972–979. [Google Scholar] [CrossRef]
- Kieninger, E.; Yammine, S.; Korten, I.; Anagnostopoulou, P.; Singer, F.; Frey, U.; Mornand, A.; Zanolari, M.; Rochat, I.; Trachsel, D.; et al. Elevated lung clearance index in infants with cystic fibrosis shortly after birth. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2017, 50. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Thia, L.P.; Hoo, A.F.; Bush, A.; Aurora, P.; Wade, A.; Chudleigh, J.; Lum, S.; Stocks, J.; London Cystic Fibrosis, C. Evolution of lung function during the first year of life in newborn screened cystic fibrosis infants. Thorax 2014, 69, 910–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, K.A.; Foong, R.E.; Grdosic, J.; Harper, A.; Skoric, B.; Clem, C.; Davis, M.; Turkovic, L.; Stick, S.M.; Davis, S.D.; et al. Multiple-Breath Washout Outcomes Are Sensitive to Inflammation and Infection in Children with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2017, 14, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Singer, F.; Kieninger, E.; Abbas, C.; Yammine, S.; Fuchs, O.; Proietti, E.; Regamey, N.; Casaulta, C.; Frey, U.; Latzin, P. Practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatric Pulmonol. 2013, 48, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Davis, S.D.; Retsch-Bogart, G.; Webster, H.; Davis, M.; Johnson, R.C.; Jensen, R.; Pizarro, M.E.; Kane, M.; Clem, C.C.; et al. Progression of Lung Disease in Preschool Patients with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2017, 195, 1216–1225. [Google Scholar] [CrossRef]
- Svedberg, M.; Gustafsson, P.M.; Robinson, P.D.; Rosberg, M.; Lindblad, A. Variability of lung clearance index in clinically stable cystic fibrosis lung disease in school age children. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2018, 17, 236–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graeber, S.Y.; Boutin, S.; Wielputz, M.O.; Joachim, C.; Frey, D.L.; Wege, S.; Sommerburg, O.; Kauczor, H.U.; Stahl, M.; Dalpke, A.H.; et al. Effects of Lumacaftor-Ivacaftor on Lung Clearance Index, Magnetic Resonance Imaging and Airway Microbiome in Phe508del Homozygous Patients with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2021. print. [Google Scholar] [CrossRef]
- Wielpütz, M.O.; Puderbach, M.; Kopp-Schneider, A.; Stahl, M.; Fritzsching, E.; Sommerburg, O.; Ley, S.; Sumkauskaite, M.; Biederer, J.; Kauczor, H.U.; et al. Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2014, 189, 956–965. [Google Scholar] [CrossRef]
- Brody, A.S.; Tiddens, H.A.; Castile, R.G.; Coxson, H.O.; de Jong, P.A.; Goldin, J.; Huda, W.; Long, F.R.; McNitt-Gray, M.; Rock, M.; et al. Computed tomography in the evaluation of cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2005, 172, 1246–1252. [Google Scholar] [CrossRef]
- Bouma, N.R.; Janssens, H.M.; Andrinopoulou, E.R.; Tiddens, H. Airway disease on chest computed tomography of preschool children with cystic fibrosis is associated with school-age bronchiectasis. Pediatric Pulmonol. 2020, 55, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Puderbach, M.; Eichinger, M.; Haeselbarth, J.; Ley, S.; Kopp-Schneider, A.; Tuengerthal, S.; Schmaehl, A.; Fink, C.; Plathow, C.; Wiebel, M.; et al. Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: Comparison to thin-section CT and chest X-ray. Investig. Radiol. 2007, 42, 715–725. [Google Scholar] [CrossRef]
- Eichinger, M.; Optazaite, D.E.; Kopp-Schneider, A.; Hintze, C.; Biederer, J.; Niemann, A.; Mall, M.A.; Wielpütz, M.O.; Kauczor, H.U.; Puderbach, M. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur. J. Radiol. 2012, 81, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Sileo, C.; Corvol, H.; Boelle, P.Y.; Blondiaux, E.; Clement, A.; Ducou Le Pointe, H. HRCT and MRI of the lung in children with cystic fibrosis: Comparison of different scoring systems. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2014, 13, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidenreich, J.F.; Veldhoen, S.; Metz, C.; Mendes Pereira, L.; Benkert, T.; Pfeuffer, J.; Bley, T.A.; Kostler, H.; Weng, A.M. Functional MRI of the Lungs Using Single Breath-Hold and Self-Navigated Ultrashort Echo Time Sequences. Radiol. Cardiothorac. Imaging 2020, 2, e190162. [Google Scholar] [CrossRef] [PubMed]
- Triphan, S.M.F.; Stahl, M.; Jobst, B.J.; Sommerburg, O.; Kauczor, H.U.; Schenk, J.P.; Alrajab, A.; Eichinger, M.; Mall, M.A.; Wielputz, M.O. Echo time-dependence of observed lung T1 in patients with cystic fibrosis and correlation with clinical metrics. J. Magn. Reson. Imaging 2020, e27271. [Google Scholar] [CrossRef]
- Leutz-Schmidt, P.; Stahl, M.; Sommerburg, O.; Eichinger, M.; Puderbach, M.U.; Schenk, J.P.; Alrajab, A.; Triphan, S.M.F.; Kauczor, H.U.; Mall, M.A.; et al. Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur. J. Radiol. 2018, 101, 178–183. [Google Scholar] [CrossRef]
- Wielputz, M.O.; von Stackelberg, O.; Stahl, M.; Jobst, B.J.; Eichinger, M.; Puderbach, M.U.; Nahrlich, L.; Barth, S.; Schneider, C.; Kopp, M.V.; et al. Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2018, 17, 518–527. [Google Scholar] [CrossRef]
- Wielpütz, M.O.; Eichinger, M.; Biederer, J.; Wege, S.; Stahl, M.; Sommerburg, O.; Mall, M.A.; Kauczor, H.U.; Puderbach, M. Imaging of Cystic Fibrosis Lung Disease and Clinical Interpretation. Rofo 2016, 188, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Shammi, U.A.; D’Alessandro, M.F.; Altes, T.; Hersman, F.W.; Ruset, I.C.; Mugler, J., 3rd; Meyer, C.; Mata, J.; Qing, K.; Thomen, R. Comparison of Hyperpolarized (3)He and (129)Xe MR Imaging in Cystic Fibrosis Patients. Acad. Radiol. 2021. [Google Scholar] [CrossRef]
- Smith, L.J.; Collier, G.J.; Marshall, H.; Hughes, P.J.C.; Biancardi, A.M.; Wildman, M.; Aldag, I.; West, N.; Horsley, A.; Wild, J.M. Patterns of regional lung physiology in cystic fibrosis using ventilation magnetic resonance imaging and multiple-breath washout. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2018, 52. [Google Scholar] [CrossRef]
- Couch, M.J.; Thomen, R.; Kanhere, N.; Hu, R.; Ratjen, F.; Woods, J.; Santyr, G. A two-center analysis of hyperpolarized (129)Xe lung MRI in stable pediatric cystic fibrosis: Potential as a biomarker for multi-site trials. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2019, 18, 728–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomen, R.P.; Walkup, L.L.; Roach, D.J.; Cleveland, Z.I.; Clancy, J.P.; Woods, J.C. Hyperpolarized (129)Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2017, 16, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomen, R.P.; Walkup, L.L.; Roach, D.J.; Higano, N.; Schapiro, A.; Brody, A.; Clancy, J.P.; Cleveland, Z.I.; Woods, J.C. Regional Structure-Function in Cystic Fibrosis Lung Disease Using Hyperpolarized (129)Xe and Ultrashort Echo Magnetic Resonance Imaging. Am. J. Respir. Crit. Care Med. 2020, 202, 290–292. [Google Scholar] [CrossRef]
- Willmering, M.M.; Roach, D.J.; Kramer, E.L.; Walkup, L.L.; Cleveland, Z.I.; Woods, J.C. Sensitive structural and functional measurements and 1-year pulmonary outcomes in pediatric cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.C.; Wild, J.M.; Wielputz, M.O.; Clancy, J.P.; Hatabu, H.; Kauczor, H.U.; van Beek, E.J.R.; Altes, T.A. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J. Magn. Reson. Imaging 2020, 52, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Rosenow, T.; Mok, L.C.; Turkovic, L.; Berry, L.J.; Sly, P.D.; Ranganathan, S.; Tiddens, H.; Stick, S.M. The cumulative effect of inflammation and infection on structural lung disease in early cystic fibrosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2019, 54. [Google Scholar] [CrossRef] [PubMed]
- Linnane, B.; Walsh, A.M.; Walsh, C.J.; Crispie, F.; O’Sullivan, O.; Cotter, P.D.; McDermott, M.; Renwick, J.; McNally, P. The Lung Microbiome in Young Children with Cystic Fibrosis: A Prospective Cohort Study. Microorganisms 2021, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Boutin, S.; Depner, M.; Stahl, M.; Graeber, S.Y.; Dittrich, S.A.; Legatzki, A.; von Mutius, E.; Mall, M.; Dalpke, A.H. Comparison of Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis. Mediat. Inflamm. 2017, 2017, 5047403. [Google Scholar] [CrossRef] [Green Version]
- Boutin, S.; Graeber, S.Y.; Weitnauer, M.; Panitz, J.; Stahl, M.; Clausznitzer, D.; Kaderali, L.; Einarsson, G.; Tunney, M.M.; Elborn, J.S.; et al. Comparison of microbiomes from different niches of upper and lower airways in children and adolescents with cystic fibrosis. PLoS ONE 2015, 10, e0116029. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.L.; Leong, L.E.X.; Ivey, K.L.; Wesselingh, S.; Grimwood, K.; Wainwright, C.E.; Rogers, G.B. Australasian Cystic Fibrosis Bronchoalveolar Lavage study, g. Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2020, 19, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, C.E.; Vidmar, S.; Armstrong, D.S.; Byrnes, C.A.; Carlin, J.B.; Cheney, J.; Cooper, P.J.; Grimwood, K.; Moodie, M.; Robertson, C.F.; et al. Effect of bronchoalveolar lavage-directed therapy on Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: A randomized trial. JAMA J. Am. Med. Assoc. 2011, 306, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Margaroli, C.; Garratt, L.W.; Horati, H.; Dittrich, A.S.; Rosenow, T.; Montgomery, S.T.; Frey, D.L.; Brown, M.R.; Schultz, C.; Guglani, L.; et al. Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, B.W.; Banks-Schlegel, S.; Accurso, F.J.; Boucher, R.C.; Cutting, G.R.; Engelhardt, J.F.; Guggino, W.B.; Karp, C.L.; Knowles, M.R.; Kolls, J.K.; et al. Future directions in early cystic fibrosis lung disease research: An NHLBI workshop report. Am. J. Respir. Crit. Care Med. 2012, 185, 887–892. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castanos, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [Green Version]
- Mall, M.A.; Mayer-Hamblett, N.; Rowe, S.M. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am. J. Respir. Crit. Care Med. 2020, 201, 1193–1208. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Wainwright, C.E.; Sawicki, G.S.; Higgins, M.N.; Campbell, D.; Harris, C.; Panorchan, P.; Haseltine, E.; Tian, S.; Rosenfeld, M. Ivacaftor in Infants Aged 4 to <12 Months with Cystic Fibrosis and a Gating Mutation. Results of a Two-Part Phase 3 Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 203, 585–593. [Google Scholar] [CrossRef]
Technique | Investigated Aspect of CF Lung Disease | Applicable Age Range | Advantages | Disadvantages |
---|---|---|---|---|
Spirometry | lung function | ≥3 years | good availability | necessitates cooperation insensitive for mild changes |
MBW | lung function | from infancy on (requiring sedation in some young patients) | performed in tidal breathing with minimal cooperation detects early ventilation inhomogeneities | only available at specialized centers harmonization between devices, tracer gases and protocols pending |
CT | lung structure | from infancy on (requiring sedation in some young patients) | good availability short duration of performance high resolution images detecting early morphological changes | ionizing radiation (limiting repeatability) no information on lung function |
MRI | lung structure lung function | from infancy on (requiring sedation in young patients) | sensitive to early CF lung disease can be repeated in short time (no radiation) | performed at specialized centers investigation takes longer than CT lower resolution than CT |
BAL | infection inflammation | from infancy on (requiring anesthesia in young patients) | only way to properly investigate colonization of the lower airways and to measure inflammatory markers | invasive BAL-directed therapy has shown no advantage over standard therapy |
Finding | Infants and Toddlers | Preschoolers | School-Age Children | Adolescents |
---|---|---|---|---|
Pulmonary function | ||||
Altered airway flow and resistance | Davies 2017 Hoo 2012 Kopp 2015 Lum 2007 Nguyen 2014 Pillarisetti 2011 Ramsey 2014 | Gustafsson 2003 Gustafsson 2008 Ramsey 2014 Stahl 2017 Stanojevic 2017 | Couch 2019 Fuchs 2008 Goss 2004 Gustafsson 2003 Gustafsson 2008 Kraemer 2005 McCague 2019 Ramsey 2014 Sanders 2015 Sanders 2014 Smith 2018 Stahl 2017 Svedberg 2018 Thomen 2017 Thomen 2020 Triphan 2020 Waters 2012 Willmering 2020 Zemanick 2015 | Collins 2008 Couch 2019 Frey 2021 Fuchs 2008 Goss 2004 Graeber 2021 Gustafsson 2003 Gustafsson 2008 Kraemer 2005 McCague 2019 McKay 2005 Sanders 2014 Smith 2018 Stahl 2017 Svedberg 2018 Thomen 2017 Thomen 2020 Triphan 2020 Waters 2012 Willmering 2020 |
Hyperinflation | Davies 2017 Hoo 2012 Kieninger 2017 Nguyen 2014 | Kraemer 2005 | Kraemer 2005 | |
Ventilation inhomogeneity | Belessis 2012 Davies 2017 Hoo 2012 Kieninger 2017 Lum 2007 Nguyen 2014 Ramsey 2016 Simpson 2015 Stahl 2018 Stahl 2014 Stahl 2017 Stahl 2019b Subbarao 2013 Triphan 2020 Warrier 2019 | Aurora 2005 Aurora 2011 Belessis 2012 Downing 2016 Gustafsson 2003 Gustafsson 2008 McNamara 2019 Ramsey 2017 Ramsey 2016 Ratjen 2019 Singer 2013 Stahl 2018 Stahl 2014 Stahl 2020 Stahl 2017 Stanojevic 2017 Subbarao 2013 Triphan 2020 Warrier 2019 | Amin 2010 Amin 2011 Aurora 2011 Couch 2019 Davies 2013 Fuchs 2008 Gustafsson 2003 Gustafsson 2008 Kraemer 2005 Ramsey 2016 Singer 2013 Smith 2018 Stahl 2017 Svedberg 2018 Triphan 2020 Willmering 2020 | Amin 2010 Amin 2011 Couch 2019 Davies 2013 Fuchs 2008 Graeber 2021 Gustafsson 2003 Gustafsson 2008 Kraemer 2005 Singer 2013 Smith 2018 Stahl 2017 Svedberg 2018 Triphan 2020 Willmering 2020 |
Imaging | ||||
Bronchial wall thickening | Eichinger 2012 Leutz-Schmidt 2018 Sly 2009 Stahl 2019a Stahl 2017 Stahl 2019b Stick 2009 Wielpütz 2014 Wielpütz 2018 | Bouma 2020 Eichinger 2012 Leutz-Schmidt 2018 Stahl 2019a Stahl 2017 Stick 2009 Taylor 2020 Wielpütz 2014 Wielpütz 2018 | Eichinger 2012 Stahl 2017 Thomen 2020 Willmering 2020 | Eichinger 2012 Graeber 2021 Puderbach 2007 Stahl 2017 Thomen 2020 Willmering 2020 |
Bronchial dilatation/bronchiectasis | Eichinger 2012 Leutz-Schmidt 2018 Margaroli 2019 Mott 2012 Ramsey 2016 Sly 2009 Stahl 2019a Stahl 2017 Stahl 2019b Stick 2009 Warrier 2019 Wielpütz 2014 Wielpütz 2018 | Bouma 2020 Eichinger 2012 Leutz-Schmidt 2018 Margaroli 2019 Mott 2012 Ramsey 2016 Stahl 2019a Stahl 2017 Stick 2009 Taylor 2020 Warrier 2019 Wielpütz 2014 Wielpütz 2018 | Eichinger 2012 Bouma 2020 Gustafsson 2008 Ramsey 2016 Stahl 2017 Thomen 2020 Willmering 2020 | Graeber 2021 Gustafsson 2008 Puderbach 2007 Stahl 2017 Thomen 2020 Willmering 2020 |
Mucus plugging | Eichinger 2012 Leutz-Schmidt 2018 Stahl 2019a Stahl 2017 Stahl 2019b Wielpütz 2014 Wielpütz 2018 | Bouma 2020 Eichinger 2012 Leutz-Schmidt 2018 Stahl 2019a Stahl 2017 Taylor 2020 Wielpütz 2014 Wielpütz 2018 | Eichinger 2012 Stahl 2017 Thomen 2020 Willmering 2020 | Eichinger 2012 Graeber 2021 Puderbach 2007 Stahl 2017 Thomen 2020 Willmering 2020 |
Air trapping | Kopp 2015 Mott 2012 Ramsey 2016 Sly 2009 Stick 2009 | Mott 2012 Ramsey 2016 Stick 2009 Taylor 2020 | Gustafsson 2008 Ramsey 2016 | Gustafsson 2008 |
Structural lung disease/abnormal CT or MRI score | Kopp 2015 Montgomery 2018 Muhlebach 2018 Ramsey 2014 Ramsey 2016 Rosenow 2019 Triphan 2020 Wainwright 2011 | Esther 2019 Gustafsson 2008 Montgomery 2018 Muhlebach 2018 Ramsey 2014 Ramsey 2016 Rosenow 2019 Taylor 2020 Triphan 2020 Wainwright 2011 | Gustafsson 2008 Ramsey 2014 Ramsey 2016 Triphan 2020 | Gustafsson 2008 Triphan 2020 |
Perfusion deficits | Eichinger 2012 Leutz-Schmidt 2018 Stahl 2019a Stahl 2017 Triphan 2020 Wielpütz 2014 Wielpütz 2018 | Eichinger 2012 Leutz-Schmidt 2018 Stahl 2019a Stahl 2017 Triphan 2020 Wielpütz 2014 Wielpütz 2018 | Eichinger 2012 Stahl 2017 Triphan 2020 | Eichinger 2012 Graeber 2021 Stahl 2017 Triphan 2020 |
VDP/VHI | Couch 2019 Smith 2018 Thomen 2017 Thomen 2020 Willmering 2020 | Couch 2019 Smith 2018 Thomen 2017 Thomen 2020 Willmering 2020 | ||
Inflammation/Infection | ||||
Inflammation | Belessis 2012 Deschamp 2019 Esther 2019 Kopp 2019 Linnane 2021 Margaroli 2018 Montgomery 2018 Mott 2012 Muhlebach 2018 Pillarisetti 2011 Pittman 2017 Ramsey 2014 Rosenow 2019 Sly 2009 Stick 2009 | Belessis 2012 Esther 2019 Kopp 2019 Linnane 2021 Margaroli 2018 Montgomery 2018 Mott 2012 Muhlebach 2018 Ramsey 2017 Ramsey 2014 Rosenow 2019 Stick 2009 | Kopp 2019 Ramsey 2014 | Frey 2021 Graeber 2021 |
Infection/microbiome | Belessis 2012 Deschamp 2019 Esther 2019 Kopp 2015 Linnane 2021 Margaroli 2018 Montgomery 2018 Mott 2012 Muhlebach 2018 Pillarisetti 2011 Pittman 2017 Ramsey 2014 Rosenow 2019 Simpson 2015 Sly 2009 Stahl 2017 Stahl 2019b Stick 2009 Wainwright 2011 Warrier 2019 Wat 2008 Zemanick 2015 | Belessis 2012 Esther 2019 Linnane 2021 Margaroli 2018 Montgomery 2018 Mott 2012 Muhlebach 2018 Ramsey 2017 Ramsey 2014 Rosenow 2019 Stahl 2017 Stanojevic 2017 Stick 2009 Taylor 2020 Wainwright 2011 Warrier 2019 Wat 2008 Zemanick 2015 | Boutin 2017 Ramsey 2014 Sanders 2015 Stahl 2017 Wat 2008 Waters 2012 Zemanick 2015 | Boutin 2015 Frey 2021 Graeber 2021 Stahl 2017 Wat 2008 Waters 2012 |
Increased mucus viscosity | Esther 2019 | Esther 2019 | ||
Pulmonary exacerbations | Byrnes 2013 Rosenfeld 2012 Stahl 2019a Stahl 2019b Wainwright 2011 Zemanick 2015 | Byrnes 2013 Ratjen 2019 Rosenfeld 2012 Stahl 2019a Stanojevic 2017 Wainwright 2011 Zemanick 2015 | Farhat 2013 Goss 2004 Zemanick 2015 | Farhat 2013 Goeminne 2013 Goss 2004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stahl, M.; Steinke, E.; Mall, M.A. Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes 2021, 12, 803. https://doi.org/10.3390/genes12060803
Stahl M, Steinke E, Mall MA. Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes. 2021; 12(6):803. https://doi.org/10.3390/genes12060803
Chicago/Turabian StyleStahl, Mirjam, Eva Steinke, and Marcus A. Mall. 2021. "Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis" Genes 12, no. 6: 803. https://doi.org/10.3390/genes12060803
APA StyleStahl, M., Steinke, E., & Mall, M. A. (2021). Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes, 12(6), 803. https://doi.org/10.3390/genes12060803