Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patients
2.2. Immunohistochemical Screening
2.3. Whole-Genome Sequencing
2.4. Variant Prioritization
3. Results
3.1. Variant Identification in Patients with Intact MMR Protein Expression
3.2. Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Veettil, S.K.; Lim, K.G.; Chaiyakunapruk, N.; Ching, S.M.; Hassan, M.R.A. Colorectal cancer in Malaysia: Its burden and implications for a multiethnic country. Asian J. Surg. 2017, 40, 481–489. [Google Scholar] [CrossRef]
- Hassan, M.R.A.; Khazim, W.K.W.; Othman, Z.; Mustapha, N.R.N.; Said, R.M.; Leong, T.W.; Suan, M.A.M.; Soelar, S.A. The Second Report of the National Cancer Patient Registry-Colorectal Cancer, 2008–2013; National Cancer Patient Registry-Colorectal Cancer and Clinical Research Centre (CRC): Kuala Lumpur, Malaysia, 2014. [Google Scholar]
- Kastrinos, F.; Syngal, S. Inherited colorectal cancer syndromes. Cancer J. 2011, 17, 405. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Sun, M.-H.; Lu, H.-F.; Zhang, T.-M.; Mo, S.-J.; Xu, Y.; Cai, S.-J.; Zhu, X.-Z.; Shi, D.-R. Clinicopathological and molecular genetic analysis of 4 typical Chinese HNPCC families. World J. Gastroenterol. 2001, 7, 805. [Google Scholar] [CrossRef]
- Lynch, H.T.; De la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 1999, 36, 801–818. [Google Scholar] [PubMed]
- Lynch, H.T.; Lynch, J.F.; Shaw, T.G.; Lubiński, J. HNPCC (Lynch Syndrome): Differential Diagnosis, Molecular Genetics and Management—A Review. Hered. Cancer Clin. Pract. 2003, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Gala, M.; Chung, D.C. Hereditary colon cancer syndromes. In Seminars in Oncology; Elsevier: Omaha, NE, USA, 2011; pp. 490–499. [Google Scholar]
- Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology 2010, 138, 2044–2058. [Google Scholar] [CrossRef] [Green Version]
- Rahner, N.; Steinke, V. Hereditary cancer syndromes. Dtsch. Ärzteblatt Int. 2008, 105, 706. [Google Scholar] [CrossRef] [PubMed]
- Valle, L. Genetic predisposition to colorectal cancer: Where we stand and future perspectives. World J. Gastroenterol. WJG 2014, 20, 9828. [Google Scholar] [CrossRef]
- Jiao, X.; Liu, W.; Mahdessian, H.; Bryant, P.; Ringdahl, J.; Timofeeva, M.; Farrington, S.M.; Dunlop, M.; Lindblom, A. Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population. PLoS ONE 2018, 13, e0193547. [Google Scholar] [CrossRef] [Green Version]
- Mardis, E.R.; Wilson, R.K. Cancer genome sequencing: A review. Hum. Mol. Genet. 2009, 18, R163–R168. [Google Scholar] [CrossRef]
- Pleasance, E.D.; Cheetham, R.K.; Stephens, P.J.; McBride, D.J.; Humphray, S.J.; Greenman, C.D.; Varela, I.; Lin, M.-L.; Ordóñez, G.R.; Bignell, G.R. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010, 463, 191. [Google Scholar] [CrossRef]
- Shanmugam, V.; Ramanathan, R.K.; Lavender, N.A.; Sinari, S.; Chadha, M.; Liang, W.S.; Kurdoglu, A.; Izatt, T.; Christoforides, A.; Benson, H. Whole genome sequencing reveals potential targets for therapy in patients with refractory KRAS mutated metastatic colorectal cancer. BMC Med. Genom. 2014, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Kan, Z.; Zheng, H.; Liu, X.; Li, S.; Barber, T.; Gong, Z.; Gao, H.; Hao, K.; Willard, M.D.; Xu, J. Whole genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013, 23, 1422–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwinski, P.; Ong, C.; Ling, M.H.; Poh, Y.M.; Khan, A.M.; Ong, H.S. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Front. Genet. 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Meienberg, J.; Bruggmann, R.; Oexle, K.; Matyas, G. Clinical sequencing: Is WGS the better WES? Hum. Genet. 2016, 135, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhari, W.K.W.; Rahman, W.F.W.A.; Sidek, A.S.M.; Hassan, M.R.A.; Ahmad, K.B.; Noordin, A.; Zakaria, A.D.; Macrae, F.; Zilfalil, B.A. Analysis of Hereditary Nonpolyposis Colorectal Cancer in Malay Cohorts using Immunohistochemical Screening. Asian Pac. J. Cancer Prev. 2015, 16, 3767–3771. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Li, Y.; Fang, X.; Yang, H.; Wang, J.; Kristiansen, K.; Wang, J. SNP detection for massively parallel whole-genome resequencing. Genome Res. 2009, 19, 1124–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, G.P. A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-H.; Tseng, Y.-C. Genotype imputation accuracy with different reference panels in admixed populations. In BMC Proceedings; BioMed Central: London, UK, 2014; p. S64. [Google Scholar]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef] [Green Version]
- Forbes, S.A.; Beare, D.; Gunasekaran, P.; Leung, K.; Bindal, N.; Boutselakis, H.; Ding, M.; Bamford, S.; Cole, C.; Ward, S. COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2014, 43, D805–D811. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2015, 44, D862–D868. [Google Scholar] [CrossRef] [Green Version]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Howells, K.; Phillips, A.D.; Thomas, N.S.; Cooper, D.N. The human gene mutation database: 2008 update. Genome Med. 2009, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Pritchard, B.; Rios, D.; Chen, Y.; Flicek, P.; Cunningham, F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010, 26, 2069–2070. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2014, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Croft, D.; Mundo, A.F.; Haw, R.; Milacic, M.; Weiser, J.; Wu, G.; Caudy, M.; Garapati, P.; Gillespie, M.; Kamdar, M.R. The Reactome pathway knowledgebase. Nucleic Acids Res. 2013, 42, D472–D477. [Google Scholar] [CrossRef] [PubMed]
- Lupski, J.R.; Reid, J.G.; Gonzaga-Jauregui, C.; Rio Deiros, D.; Chen, D.C.; Nazareth, L.; Bainbridge, M.; Dinh, H.; Jing, C.; Wheeler, D.A. Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med. 2010, 362, 1181–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Rawe, J.; Jiang, T.; Sun, G.; Wu, Y.; Wang, W.; Hu, J.; Bodily, P.; Tian, L.; Hakonarson, H.; Johnson, W.E. Low concordance of multiple variant-calling pipelines: Practical implications for exome and genome sequencing. Genome Med. 2013, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.J.; Chen, R.; Lam, H.Y.; Karczewski, K.J.; Chen, R.; Euskirchen, G.; Butte, A.J.; Snyder, M. Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 2011, 29, 908. [Google Scholar] [CrossRef] [Green Version]
- Zahir, F.R.; Mwenifumbo, J.C.; Chun, H.-J.E.; Lim, E.L.; Van Karnebeek, C.D.; Couse, M.; Mungall, K.L.; Lee, L.; Makela, N.; Armstrong, L. Comprehensive whole genome sequence analyses yields novel genetic and structural insights for Intellectual Disability. BMC Genom. 2017, 18, 403. [Google Scholar] [CrossRef] [Green Version]
- Sefid Dashti, M.J.; Gamieldien, J. A practical guide to filtering and prioritizing genetic variants. BioTechniques 2017, 62, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Zhang, C.; Li, Y.; Yu, X.; Zheng, J.; Zou, P.; Li, Y.; Bin, X.; Lu, J.; Zhou, Y. A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population. Breast Cancer Res. Treat. 2011, 126, 487–495. [Google Scholar] [CrossRef]
- Baeuerle, P.; Gires, O. EpCAM (CD326) finding its role in cancer. Br. J. Cancer 2007, 96, 417–423. [Google Scholar] [CrossRef]
- Kloor, M.; Voigt, A.Y.; Schackert, H.K.; Schirmacher, P.; von Knebel Doeberitz, M.; Bläker, H. Analysis of EPCAM protein expression in diagnostics of Lynch syndrome. J. Clin. Oncol. 2011, 29, 223–227. [Google Scholar] [CrossRef]
- Ligtenberg, M.J.; Kuiper, R.P.; Chan, T.L.; Goossens, M.; Hebeda, K.M.; Voorendt, M.; Lee, T.Y.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.J. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 2009, 41, 112. [Google Scholar] [CrossRef] [PubMed]
- Kempers, M.J.; Kuiper, R.P.; Ockeloen, C.W.; Chappuis, P.O.; Hutter, P.; Rahner, N.; Schackert, H.K.; Steinke, V.; Holinski-Feder, E.; Morak, M. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: A cohort study. Lancet Oncol. 2011, 12, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Guarinos, C.; Castillejo, A.; Barberá, V.-M.; Pérez-Carbonell, L.; Sánchez-Heras, A.-B.; Segura, Á.; Guillén-Ponce, C.; Martínez-Cantó, A.; Castillejo, M.-I.; Egoavil, C.-M. EPCAM germ line deletions as causes of Lynch syndrome in Spanish patients. J. Mol. Diagn. 2010, 12, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, M.J.; Kuiper, R.P.; van Kessel, A.G.; Hoogerbrugge, N. EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. Fam. Cancer 2013, 12, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Tutlewska, K.; Lubinski, J.; Kurzawski, G. Germline deletions in the EPCAM gene as a cause of Lynch syndrome–literature review. Hered. Cancer Clin. Pract. 2013, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Lu, R.; Martin, T.A.; Jiang, W.G. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases. Mol. Med. Rep. 2014, 9, 779–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornely, R.M.; Schlingmann, B.; Shepherd, W.S.; Chandler, J.D.; Neujahr, D.C.; Koval, M. Two common human CLDN5 alleles encode different open reading frames but produce one protein isoform. Ann. Acad. Sci. 2017, 1397, 119–129. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.; Sirotkin, K. dbSNP—Database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999, 9, 677–679. [Google Scholar] [PubMed]
- Allen, I.C.; Eden, K.; Heid, B.; Holl, E.K. Map3K14 signaling attenuates the development of colorectal cancer through activation of the non-canonical NF-κB signaling cascade. Am. Assoc. Immnol. 2017, 198 (Suppl. 1), 197.6. [Google Scholar]
- Storz, P. Targeting the alternative NF-κB pathway in pancreatic cancer: A new direction for therapy? Expert Rev. Anticancer Ther. 2013, 13, 501–504. [Google Scholar] [CrossRef] [Green Version]
- Wharry, C.E.; Haines, K.M.; Carroll, R.G.; May, M.J. Constitutive noncanonical NFκB signaling in pancreatic cancer cells. Cancer Biol. Ther. 2009, 8, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, F.; Monti, P.; Leone, B.E.; Zerbi, A.; Vecchi, A.; Piemonti, L.; Mantovani, A.; Allavena, P. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res. 2004, 64, 8420–8427. [Google Scholar] [CrossRef] [Green Version]
- Koslowski, M.; Sahin, U.; Dhaene, K.; Huber, C.; Türeci, Ö. MS4A12 is a colon-selective store-operated calcium channel promoting malignant cell processes. Cancer Res. 2008, 68, 3458–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Chen, Q.; Wu, Y.; Zhu, M.; Hu, J.; Zhuang, Z. MTSS1 inhibits colorectal cancer metastasis by regulating the CXCR4/CXCL12 signaling axis. Int. J. Mol. Med. 2021, 47, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Hu, C.; Fan, Z.-J.; Shen, G.-L. Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci. Rep. 2021, 11, 1–12. [Google Scholar]
- Savas, S.; Tuzmen, S.; Ozcelik, H. Human SNPs resulting in premature stop codons and protein truncation. Hum. Genom. 2006, 2, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranzani, M.; Iyer, V.; Ibarra-Soria, X.; Velasco-Herrera, M.D.C.; Garnett, M.; Logan, D.; Adams, D.J. Revisiting olfactory receptors as putative drivers of cancer. Wellcome Open Res. 2017, 2. [Google Scholar] [CrossRef]
- Xu, L.L.; Stackhouse, B.G.; Florence, K.; Zhang, W.; Shanmugam, N.; Sesterhenn, I.A.; Zou, Z.; Srikantan, V.; Augustus, M.; Roschke, V. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res. 2000, 60, 6568–6572. [Google Scholar] [PubMed]
- Weber, L.; Al-Refae, K.; Ebbert, J.; Jägers, P.; Altmüller, J.; Becker, C.; Hahn, S.; Gisselmann, G.; Hatt, H. Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis. PLoS ONE 2017, 12, e0172491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.R.; Wegmann, D.; Ehm, M.G.; Kessner, D.; Jean, P.S.; Verzilli, C.; Shen, J.; Tang, Z.; Bacanu, S.-A.; Fraser, D. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 2012, 337, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Li, J.; Du, J.; Zhang, H.; Shen, Y.; Wang, C.-Y.; Wang, S. A missense mutation in PTCH2 underlies dominantly inherited NBCCS in a Chinese family. J. Med. Genet. 2008, 45, 303–308. [Google Scholar] [CrossRef]
- Zaphiropoulos, P.G.; Undén, A.B.; Rahnama, F.; Hollingsworth, R.E.; Toftgård, R. PTCH2, a Novel Human Patched Gene, Undergoing Alternative Splicing andUp-regulated in Basal Cell Carcinomas. Cancer Res. 1999, 59, 787–792. [Google Scholar]
- Lee, Y.; Miller, H.L.; Jensen, P.; Hernan, R.; Connelly, M.; Wetmore, C.; Zindy, F.; Roussel, M.F.; Curran, T.; Gilbertson, R.J. A molecular fingerprint for medulloblastoma. Cancer Res. 2003, 63, 5428–5437. [Google Scholar]
- Kigel, B.; Varshavsky, A.; Kessler, O.; Neufeld, G. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PLoS ONE 2008, 3, e3287. [Google Scholar] [CrossRef] [Green Version]
- Karayan-Tapon, L.; Wager, M.; Guilhot, J.; Levillain, P.; Marquant, C.; Clarhaut, J.; Potiron, V.; Roche, J. Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker? Br. J. Cancer 2008, 99, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Rueda, H.; Palacios-Corona, R.; Gutiérrez-Hermosillo, H.; Trevino, V. A robust biomarker of differential correlations improves the diagnosis of cytologically indeterminate thyroid cancers. Int. J. Mol. Med. 2016, 37, 1355–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ding, M.; Qian, N.; Song, B.; Yu, J.; Tang, J.; Wang, J. Decreased expression of semaphorin 3D is associated with genesis and development in colorectal cancer. World J. Surg. Oncol. 2017, 15, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschall, A.V.; Liu, K. Epigenetic regulation of apoptosis and cell cycle regulatory genes in human colon carcinoma cells. Genom. Data 2015, 5, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, M.L.; Witte, N.; Im, K.M.; Turan, S.; Owens, C.; Misner, K.; Tsang, S.X.; Cai, Z.; Wu, S.; Dean, M. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response. Oncogene 2017, 36, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Fan, Y.; Wang, W.; Ma, G.; Liang, L.; Shi, Q. Patterns of insertion and deletion in mammalian genomes. Curr. Genom. 2007, 8, 370–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bolós, C.; Garrido, M.; Real, F.X. MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology 1995, 109, 723–734. [Google Scholar] [CrossRef]
- Betge, J.; Schneider, N.I.; Harbaum, L.; Pollheimer, M.J.; Lindtner, R.A.; Kornprat, P.; Ebert, M.P.; Langner, C. MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: Expression profiles and clinical significance. Virchows Arch. 2016, 469, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.-W.; Zhou, B.; Wang, G.-Z.; Chen, Y.; Zhou, G.-B. Genomic variations in paired normal controls for lung adenocarcinomas. Oncotarget 2017, 8, 104113. [Google Scholar] [CrossRef] [Green Version]
- Eychène, A.; Rocques, N.; Pouponnot, C. A new MAFia in cancer. Nat. Rev. Cancer 2008, 8, 683. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Goto, N.; Kataoka, K.; Saegusa, T.; Shinno-Kohno, H.; Nishizawa, M. Isolation of the avian transforming retrovirus, AS42, carrying the v-maf oncogene and initial characterization of its gene product. Virology 1992, 188, 778–784. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, J.K.; Hornicek, F.J.; Kan, Q.; Duan, Z. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget 2016, 7, 40846. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.; Dothager, R.S.; Marasa, J.; Lewis, C.L.; Piwnica-Worms, D. Vascular endothelial growth factor receptor-1 is synthetic lethal to aberrant β-catenin activation in colon cancer. Clin. Cancer Res. 2009, 15, 7529–7537. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, K.J.; Paris, P.L.; Hoffmann, T.J.; Cardin, N.J.; Kazma, R.; Mefford, J.A.; Simko, J.P.; Ngo, V.; Chen, Y.; Levin, A.M. Mutational landscape of aggressive prostate tumors in African American men. Cancer Res. 2016, 76, 1860–1868. [Google Scholar] [CrossRef] [Green Version]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B. The reactome pathway knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef]
- Abulí, A.; Fernández-Rozadilla, C.; Alonso-Espinaco, V.; Muñoz, J.; Gonzalo, V.; Bessa, X.; González, D.; Clofent, J.; Cubiella, J.; Morillas, J.D. Case-control study for colorectal cancer genetic susceptibility in EPICOLON: Previously identified variants and mucins. BMC Cancer 2011, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, A.J.; Daniel, E.J.P.; Mahajan, S.P.; Gray, J.J.; Gerken, T.A.; Tabak, L.A.; Samara, N.L. The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function. Proc. Natl. Acad. Sci. USA 2019, 116, 20404–20410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inclusion Criteria |
---|
Malay patients (at least three generations and no admixture in the parental heritage) with colorectal cancer who fulfilled at least one of the following Bethesda Criteria:
|
Exclusion Criteria |
|
Gene | Transcript | Codon Change | Chr | Start | End | Ref | Obs | Frequency * |
---|---|---|---|---|---|---|---|---|
MOB3C | NM_145279.4:p.Arg24*/c.70C>T | Cga/Tga | chr1 | 47080679 | 47080679 | G | A | 0.642173 |
PDE4DIP | NM_001198834.4:p.Trp2351*/c.7053G>A | tgG/tgA | chr1 | 144852390 | 144852390 | C | T | - |
PDE4DIP | NM_001198834.4:p.Arg622*/c.1864C>T | Cga/Tga | chr1 | 144915561 | 144915561 | G | A | - |
OR2L8 | NM_001001963.1:p.Tyr289*/c.867T>A | taT/taA | chr1 | 248113026 | 248113026 | T | A | 0.745807 |
SEC22B | NM_004892.5:p.Arg132*/c.394C>T | Cga/Tga | chr1 | 145112420 | 145112420 | C | T | - |
ZNF117 | NM_015852.3:p.Arg428*/c.1282C>T | Cga/Tga | chr7 | 64438667 | 64438667 | G | A | 0.881789 |
ANKDD1B | NM_001276713.1:p.Trp480*/c.1439G>A | tGg/tAg | chr5 | 74965122 | 74965122 | G | A | 0.506989 |
PRIM2 | NM_000947.4:p.Gln325*/c.973C>T | Cag/Tag | chr6 | 57398270 | 57398270 | C | T | - |
OR51Q1 | NM_001004757.2:p.Arg236*/c.706C>T | Cga/Tga | chr11 | 5444136 | 5444136 | C | T | 0.453874 |
MUC19 | NM_173600.2:p.Cys1238*/c.3714C>A | tgC/tgA | chr12 | 40834955 | 40834955 | C | A | 0.518371 |
USP29 | NM_020903.2:p.Tyr913*/c.2739C>A | taC/taA | chr19 | 57642782 | 57642782 | C | A | 0.952077 |
PRM3 | NM_021247.2:p.Arg104*/c.310C>T | Cga/Tga | chr16 | 11367143 | 11367143 | G | A | 1 |
MAP3K14 | NM_003954.4:p.Ser902*/c.2705C>G | tCa/tGa | chr17 | 43342141 | 43342141 | G | C | 0.718251 |
MS4A12 | NM_017716.2:p.Gln71*/c.211C>T | Caa/Taa | chr11 | 60265002 | 60265002 | C | T | 0.478235 |
PKD1L3 | NM_181536.1:p.Arg789*/c.2365C>T | Cga/Tga | chr16 | 72001136 | 72001136 | G | A | 0.263379 |
TPTE | NM_199261.3:p.Arg229*/c.685C>T | Cga/Tga | chr21 | 10942756 | 10942756 | G | A | - |
OR5AR1 | NM_001004730.1:p.Gln19*/c.55C>T | Cag/Tag | chr11 | 56431216 | 56431216 | C | T | 0.623003 |
CENPM | NM_001110215.1:p.Arg3*/c.7C>T | Cga/Tga | chr22 | 42336172 | 42336172 | G | A | 0.239217 |
MAGEB16 | NM_001099921.1:p.Arg272*/c.814C>T | Cga/Tga | chrX | 35821127 | 35821127 | C | T | 0.620397 |
CLDN5 | NM_003277.3:p.Gln37*/c.109C>T | Cag/Tag | chr22 | 19511925 | 19511925 | G | A | 0.496805 |
Patient ID | Pathway ID | Pathway Description | FDR * | KEGG Pathway | FDR * |
---|---|---|---|---|---|
F1 | GO.0004984 | Olfactory receptor activity | 0.0000169 | Olfactory transduction | 0.00000315 |
GO.0004930 | G-protein coupled receptor activity | 0.000486 | |||
GO.0004888 | Transmembrane signalling receptor activity | 0.00497 | |||
F2 | GO.0004984 | Olfactory receptor activity | 0.00000228 | Olfactory transduction | 0.000000432 |
GO.0004930 | G-protein coupled receptor activity | 0.0000529 | |||
F5 | GO.0004984 | Olfactory receptor activity | 0.00133 | Olfactory transduction | 0.000207 |
GO.0004888 | Transmembrane signalling receptor activity | 0.00423 | |||
GO.0004930 | G-protein coupled receptor activity | 0.00602 | |||
F8 | GO.0004984 | Olfactory receptor activity | 0.00676 | Olfactory transduction | 0.00097 |
F12 | GO.0004984 | Olfactory receptor activity | 0.000105 | Olfactory transduction | 0.0000179 |
GO.0004930 | G-protein coupled receptor activity | 0.000229 | |||
GO.0004888 | Transmembrane signalling receptor activity | 0.000411 | |||
F18 | GO.0004984 | Olfactory receptor activity | 0.00064 | Olfactory transduction | 0.000101 |
GO.0004930 | G-protein coupled receptor activity | 0.000768 | |||
GO.0004888 | Transmembrane signalling receptor activity | 0.00569 | |||
F19 | GO.0004984 | Olfactory receptor activity | 0.000548 | Olfactory transduction | 0.0000863 |
GO.0004930 | G-protein coupled receptor activity | 0.00444 |
Function | Gene | Transcript | Chr | Start | End | Ref | Obs |
---|---|---|---|---|---|---|---|
In-frame insertion | CDK11B | NM_001787.2:p.Arg127_Glu128insLysGluArg/c.379_380insAAGAAA | 1 | 1647893 | 1647893 | C | CTTTCTT |
Frameshift variant | CCDC144NL | NM_001004306.1:p.Lys213fs/c.638delA | 17 | 20768755 | 20768755 | CT | C |
Frameshift variant | CCDC144NL | NM_001004306.1:p.Lys211_Gly212fs/c.631_632insG | 17 | 20768762 | 20768762 | T | TC |
In-frame insertion | GOLGA8R | NM_001282484.1:p.Gln271_Asp272insGlnGln/c.813_814insCAA | 15 | 30700168 | 30700168 | C | CTTG |
Disruptive in-frame deletion | MAFA | NM_201589.3:p.His207_His208del/c.621_623delCCA | 8 | 144511953 | 144511953 | ATGG | A |
Frameshift variant | MUC6 | NM_005961.2:p.Pro1571fs/c.4712delC | 11 | 1018088 | 1018088 | TG | T |
Frameshift variant | MUC6 | NM_005961.2:p.Pro1569_Pro1570fs/c.4707_4708insA | 11 | 1018093 | 1018093 | G | GT |
Frameshift variant | PRIM2 | NM_000947.4:p.Glu297_Asn298fs/c.890_891insA | 6 | 57398186 | 57398186 | G | GA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhari, W.K.W.; Ahmad Amin Noordin, K.B.; Zakaria, A.D.; Rahman, W.F.W.A.; Mokhter, W.M.M.W.M.; Hassan, M.R.A.; Sidek, A.S.M.; Zilfalil, B.A. Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins. Genes 2021, 12, 1448. https://doi.org/10.3390/genes12091448
Juhari WKW, Ahmad Amin Noordin KB, Zakaria AD, Rahman WFWA, Mokhter WMMWM, Hassan MRA, Sidek ASM, Zilfalil BA. Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins. Genes. 2021; 12(9):1448. https://doi.org/10.3390/genes12091448
Chicago/Turabian StyleJuhari, Wan Khairunnisa Wan, Khairul Bariah Ahmad Amin Noordin, Andee Dzulkarnaen Zakaria, Wan Faiziah Wan Abdul Rahman, Wan Muhamad Mokhzani Wan Muhamad Mokhter, Muhammad Radzi Abu Hassan, Ahmad Shanwani Mohammed Sidek, and Bin Alwi Zilfalil. 2021. "Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins" Genes 12, no. 9: 1448. https://doi.org/10.3390/genes12091448
APA StyleJuhari, W. K. W., Ahmad Amin Noordin, K. B., Zakaria, A. D., Rahman, W. F. W. A., Mokhter, W. M. M. W. M., Hassan, M. R. A., Sidek, A. S. M., & Zilfalil, B. A. (2021). Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins. Genes, 12(9), 1448. https://doi.org/10.3390/genes12091448