Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. Homozygosity Mapping and Trio-Exome Sequencing
2.3. In Silico Protein Modeling
3. Results
3.1. Family 1 with Bilateral Renal Agenesis
3.2. Family 2 with Renal Cystic Dysplasia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capone, V.P.; Morello, W.; Taroni, F.; Montini, G. Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play. Int. J. Mol. Sci. 2017, 18, 796. [Google Scholar] [CrossRef] [PubMed]
- Brophy, P.D.; Rasmussen, M.; Parida, M.; Bonde, G.; Darbro, B.W.; Hong, X.; Clarke, J.C.; Peterson, K.A.; Denegre, J.; Schneider, M.; et al. A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans. Genetics 2017, 207, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Yalavarthy, R.; Parikh, C.R. Congenital renal agenesis: A review. Saudi J. Kidney Dis. Transpl. 2003, 14, 336–341. [Google Scholar]
- Kerecuk, L.; Schreuder, M.F.; Woolf, A.S. Renal tract malformations: Perspectives for nephrologists. Nat. Clin. Pract. Nephrol. 2008, 4, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Harewood, L.; Liu, M.; Keeling, J.; Howatson, A.; Whiteford, M.; Branney, P.; Evans, M.; Fantes, J.; FitzPatrick, D.R. Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD): Postmortem analysis of 45 cases with breakpoint mapping of two de novo translocations. PLoS ONE 2010, 5, e12375. [Google Scholar] [CrossRef] [PubMed]
- Mesrobian, H.G.; Kelalis, P.P.; Hrabovsky, E.; Othersen, H.B., Jr.; deLorimier, A.; Nesmith, B. Wilms tumor in horseshoe kidneys: A report from the National Wilms Tumor Study. J. Urol. 1985, 133, 1002–1003. [Google Scholar] [CrossRef]
- Sanna-Cherchi, S.; Khan, K.; Westland, R.; Krithivasan, P.; Fievet, L.; Rasouly, H.M.; Ionita-Laza, I.; Capone, V.P.; Fasel, V.A.; Kityluk, K.; et al. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. Am. J. Hum. Genet. 2017, 101, 1034. [Google Scholar] [CrossRef]
- Sanna-Cherchi, S.; Westland, R.; Ghiggeri, G.M.; Gharavi, A.G. Genetic basis of human congenital anomalies of the kidney and urinary tract. J. Clin. Investig. 2018, 128, 4–15. [Google Scholar] [CrossRef]
- Huang, J.T.; Lee, V. Identification and characterization of a novel human nephronectin gene in silico. Int. J. Mol. Med. 2005, 15, 719–724. [Google Scholar] [CrossRef]
- Lennon, R.; Byron, A.; Humphries, J.D.; Randles, M.J.; Carisey, A.; Murphy, S.; Knight, D.; Brenchley, P.E.; Zent, R.; Humphries, M.J. Global analysis reveals the complexity of the human glomerular extracellular matrix. J. Am. Soc. Nephrol. 2014, 25, 939–951. [Google Scholar] [CrossRef]
- Miner, J.H. Mystery solved: Discovery of a novel integrin ligand in the developing kidney. J. Cell Biol. 2001, 154, 257–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller-Deile, J.; Dannenberg, J.; Schroder, P.; Lin, M.H.; Miner, J.H.; Chen, R.; Bräsen, J.H.; Thum, T.; Nyström, J.; Staggs, L.B.; et al. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. Kidney Int. 2017, 92, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Li, J.; Xie, L.; Wang, W.; Lu, Y.; Xie, M.; Huang, J.; Shen, K.; Yang, H.; Pei, C.; et al. A Biallelic Frameshift Mutation in Nephronectin Causes Bilateral Renal Agenesis in Humans. J. Am. Soc. Nephrol. 2021, 32, 1871–1879. [Google Scholar] [CrossRef]
- Eng, C.; Myers, S.M.; Kogon, M.D.; Sanicola, M.; Hession, C.; Cate, R.L.; Mulligan, L.M. Genomic structure and chromosomal localization of the human GDNFR-alpha gene. Oncogene 1998, 16, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Wen, D.; Yu, Y.; Holst, P.L.; Luo, Y.; Fang, M.; Tamir, R.; Antonio, L.; Hu, Z.; Cupples, R.; et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996, 85, 1113–1124. [Google Scholar] [CrossRef]
- Arora, V.; Khan, S.; El-Hattab, A.W.; Puri, R.D.; Rocha, M.E.; Merdzanic, R.; Paknia, O.; Beetz, C.; Rolfs, A.; Bertoli-Avella, A.M.; et al. Biallelic Pathogenic GFRA1 Variants Cause Autosomal Recessive Bilateral Renal Agenesis. J. Am. Soc. Nephrol. 2021, 32, 223–228. [Google Scholar] [CrossRef]
- Al-Shamsi, B.; Al-Kasbi, G.; Al-Kindi, A.; Bruwer, Z.; Al-Kharusi, K.; Al-Maawali, A. Biallelic loss-of-function variants of GFRA1 cause lethal bilateral renal agenesis. Eur. J. Med. Genet. 2022, 65, 104376. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sonderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Hijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Adams, S.E.; Purkiss, A.G.; Knowles, P.P.; Nans, A.; Briggs, D.C.; Borg, A.; Earl, C.P.; Goodman, K.M.; Nawrotek, A.; Borg, A.J.; et al. A two-site flexible clamp mechanism for RET-GDNF-GFRalpha1 assembly reveals both conformational adaptation and strict geometric spacing. Structure 2021, 29, 694–708.e7. [Google Scholar] [CrossRef]
- Humbert, C.; Silbermann, F.; Morar, B.; Parisot, M.; Zarhrate, M.; Masson, C.; Tores, F.; Blanchet, P.; Petrov, Y.; Van Kien, P.K.; et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 2014, 94, 288–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barak, H.; Huh, S.H.; Chen, S.; Jeanpierre, C.; Martinovic, J.; Parisot, M.; Bole-Feysot, C.; Nitschké, P.; Salomon, R.; Antignac, C.; et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev. Cell 2012, 22, 1191–1207. [Google Scholar] [CrossRef]
- Al-Hamed, M.H.; Altuwaijri, N.; Alsahan, N.; Ali, W.; Abdulwahab, F.; Alzahrani, F.; Majrashi, N.; Alkuraya, F.S. A null founder variant in NPNT, encoding nephronectin, causes autosomal recessive renal agenesis. Clin. Genet. 2022, 102, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Kohl, S.; Hwang, D.Y.; Dworschak, G.C.; Hilger, A.C.; Saisawat, P.; Vivante, A.; Stajic, N.; Bogdanovic, R.; Reutter, H.M.; Kehinde, E.O.; et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 2014, 25, 1917–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Transcript | Nucleotide Change | Amino Acid Change | PolyPhen-2 | SIFT | FATHMM-MKL | DANN | REVEL | CADD Score | ACMG | CGM-DB (ƒ) | gnomAD (ƒ) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GFRA1 | NM_001348098.4 | c.362A>G | p.Tyr121Cys | Probably damaging (1.000) | Damaging (0.001) | Damaging (0.9356) | 0.9985 | Pathogenic (0.6309) | 29.0 | PM2, PP3 | Variant not found | Variant not found |
NPNT | NM_001033047.3 | c.56C>G | p.Ala19Gly | Possibly damaging (0.841) | Tolerated (0.17) | Damaging (0.6652) | 0.9944 | Uncertain (0.324) | 23.2 | PM2 | 0.00042 | 0.0000107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hamed, M.H.; Sayer, J.A.; Alsahan, N.; Edwards, N.; Ali, W.; Tulbah, M.; Imtiaz, F. Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract. Genes 2022, 13, 1687. https://doi.org/10.3390/genes13101687
Al-Hamed MH, Sayer JA, Alsahan N, Edwards N, Ali W, Tulbah M, Imtiaz F. Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract. Genes. 2022; 13(10):1687. https://doi.org/10.3390/genes13101687
Chicago/Turabian StyleAl-Hamed, Mohamed H., John A. Sayer, Nada Alsahan, Noel Edwards, Wafaa Ali, Maha Tulbah, and Faiqa Imtiaz. 2022. "Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract" Genes 13, no. 10: 1687. https://doi.org/10.3390/genes13101687
APA StyleAl-Hamed, M. H., Sayer, J. A., Alsahan, N., Edwards, N., Ali, W., Tulbah, M., & Imtiaz, F. (2022). Missense Variants in GFRA1 and NPNT Are Associated with Congenital Anomalies of the Kidney and Urinary Tract. Genes, 13(10), 1687. https://doi.org/10.3390/genes13101687