Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. DNA Analysis
2.3. Measurement of Telomere Length
2.4. SNPs Analysis
2.5. Statistical Analysis
3. Results
3.1. Main Characteristics
3.2. Genotyping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colvin-Adams, M.; Harcourt, N.; Duprez, D. Endothelial dysfunction and cardiac allograft vasculopathy. J. Cardiovasc. Transl. Res. 2013, 6, 263–277. [Google Scholar] [CrossRef] [PubMed]
- López-Sainz, Á.; Barge-Caballero, E.; Barge-Caballero, G.; Couto-Mallón, D.; Paniagua-Martin, M.J.; Seoane-Quiroga, L.; Iglesias-Gil, C.; Herrera-Noreña, J.M.; Cuenca-Castillo, J.J.; Vázquez-Rodríguez, J.M.; et al. Late graft failure in heart transplant recipients: Incidence, risk factors and clinical outcomes. Eur. J. Heart Fail. 2018, 20, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschacher, T.; Salameh, O.; Enzmann, F.; Messner, B.; Bergmann, M. Telomere biology and thoracic aortic aneurysm. Int. J. Mol. Sci. 2017, 19, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, E.H. Switching and signaling at the telomere. Cell 2001, 106, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Saliques, S.; Zeller, M.; Lorin, J.; Lorgis, L.; Teyssier, J.R.; Cottin, Y.; Rochette, L.; Vergely, C. Telomere length and cardiovascular disease. Arch. Cardiovasc. Dis. 2010, 103, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliques, S.; Teyssier, J.R.; Vergely, C.; Lorgis, L.; Lorin, J.; Farnier, M.; Donzel, A.; Sicard, P.; Berchoud, J.; Lagrost, A.C.; et al. Circulating leukocyte telomere length and oxidative stress: A new target for statin therapy. Atherosclerosis 2011, 219, 753–760. [Google Scholar] [CrossRef]
- Soerensen, M.; Thinggaard, M.; Nygaard, M.; Dato, S.; Tan, Q.; Hjelmborg, J.; Andersen-Ranberg, K.; Stevnsner, T.; Bohr, V.A.; Kimura, M.; et al. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: A cross-sectional and longitudinal analysis. Aging Cell 2012, 11, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Burnett-Hartman, A.N.; Fitzpatrick, A.L.; Kronmal, R.A.; Psaty, B.M.; Jenny, N.S.; Bis, J.C.; Tracy, R.P.; Kimura, M.; Aviv, A. Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: The Cardiovascular Health Study. Mech. Ageing Dev. 2012, 133, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maubaret, C.G.; Salpea, K.D.; Romanoski, C.E.; Folkersen, L.; Cooper, J.A.; Stephanou, C.; Li, K.W.; Palmen, J.; Hamsten, A.; Neil, A.; et al. Association of TERC and OBFC1 haplotypes with mean leukocyte telomere length and risk for coronary heart disease. PLoS ONE 2013, 8, e83122. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Sun, J.; Zhang, L.; Li, R.; Wang, Y.; Cianflone, K.; Ding, H.; Wang, D.W. Lack of causal relationship between leukocyte telomere length and coronary heart disease. Atherosclerosis 2014, 233, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Al Khaldi, R.; Mojiminiyi, O.; AlMulla, F.; Abdella, N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of type 2 diabetes mellitus. PLoS ONE 2015, 10, e0145721. [Google Scholar] [CrossRef] [PubMed]
- Dlouha, D.; Pitha, J.; Mesanyova, J.; Mrazkova, J.; Fellnerova, A.; Stanek, V.; Lanska, V.; Hubacek, J.A. Genetic variants within telomere associated genes, leukocyte telomere length and the risk of acute coronary syndrome in Czech women. Clin. Chim. Acta 2016, 454, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Njajou, O.T.; Blackburn, E.H.; Pawlikowska, L.; Mangino, M.; Damcott, C.M.; Kwok, P.Y.; Spector, T.D.; Newman, A.B.; Harris, T.B.; Cummings, S.R.; et al. A common variant in the telomerase RNA component is associated with short telomere length. PLoS ONE 2010, 5, e13048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Zhang, Z.; Yu, L.; Cao, L.; Zhou, D.; Kan, M.; Li, B.; Zhang, D.; He, L.; Liu, Y. Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur. J. Hum. Genet. 2011, 19, 721–723. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Beggs, A.D.; Carvajal-Carmona, L.; Farrington, S.; Tenesa, A.; Walker, M.; Howarth, K.; Ballereau, S.; Hodgson, S.V.; Zauber, A.; et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 2012, 61, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cheang, I.; Zhang, Z.; Yao, W.; Zhou, Y.; Zhang, H.; Liu, Y.; Zuo, X.; Li, X.; Cao, Q. Prognostic association of TERC, TERT gene polymorphism, and leukocyte telomere length in acute heart failure: A prospective study. Front. Endocrinol. 2021, 12, 650922. [Google Scholar] [CrossRef]
- Crocco, P.; Barale, R.; Rose, G.; Rizzato, C.; Santoro, A.; De Rango, F.; Carrai, M.; Fogar, P.; Monti, D.; Biondi, F.; et al. Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. Biogerontology 2015, 16, 353–364. [Google Scholar] [CrossRef]
- Zee, R.Y.; Ridker, P.M.; Chasman, D.I. Genetic variants in eleven telomere-associated genes and the risk of incident cardio/cerebrovascular disease: The Women’s Genome Health Study. Clin. Chim. Acta 2011, 412, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Almén, M.S.; Jacobsson, J.A.; Moschonis, G.; Benedict, C.; Chrousos, G.P.; Fredriksson, R.; Schiöth, H.B. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics 2012, 99, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.; Neuhausen, S.L.; Hunt, S.C.; Kimura, M.; Hwang, S.J.; Chen, W.; Bis, J.C.; Fitzpatrick, A.L.; Smith, E.; Johnson, A.D.; et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc. Natl. Acad. Sci. USA 2010, 107, 9293–9298. [Google Scholar] [CrossRef]
- Lee, J.H.; Cheng, R.; Honig, L.S.; Feitosa, M.; Kammerer, C.M.; Kang, M.S.; Schupf, N.; Lin, S.J.; Sanders, J.L.; Bae, H.; et al. Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21 associated with variation in leukocyte telomere length: The Long Life Family Study. Front. Genet. 2014, 4, 310. [Google Scholar] [CrossRef] [Green Version]
- Hubacek, J.A.; Vymetalova, J.; Lanska, V.; Dlouha, D. The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin. Transpl. 2018, 32, e13443. [Google Scholar] [CrossRef]
- Dlouha, D.; Vymetalova, J.; Hubacek, J.A.; Lanska, V.; Malek, I. Association between aortic telomere length and cardiac post-transplant allograft function. Int. J. Cardiol. 2019, 290, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Rothman, D.J.; Rose, E.; Awaya, T.; Cohen, B.; Daar, A.; Dzemeshkevich, S.L.; Lee, C.J.; Munro, R.; Reyes, H.; Rothman, S.M.; et al. The Bellagio Task Force report on transplantation, bodily integrity, and the International Traffic in Organs. Transpl. Proc. 1997, 29, 2739–2745. [Google Scholar] [CrossRef]
- Stewart, S.; Winters, G.L.; Fishbein, M.C.; Tazelaar, H.D.; Kobashigawa, J.; Abrams, J.; Andersen, C.B.; Angelini, A.; Berry, G.J.; Burke, M.M.; et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005, 24, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Berry, G.J.; Burke, M.M.; Andersen, C.; Bruneval, P.; Fedrigo, M.; Fishbein, M.C.; Goddard, M.; Hammond, E.H.; Leone, O.; Marboe, C.; et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transpl. 2013, 32, 1147–1162. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salpea, K.D.; Nicaud, V.; Tiret, L.; Talmud, P.J.; Humphries, S.E.; EARS II group. The association of telomere length with paternal history of premature myocardial infarction in the European Atherosclerosis Research Study II. J. Mol. Med. 2008, 86, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Dlouha, D.; Maluskova, J.; Kralova Lesna, I.; Lanska, V.; Hubacek, J.A. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiol. Res. 2014, 63, S343–S350. [Google Scholar] [CrossRef]
- Chih, S.; Chruscinski, A.; Ross, H.J.; Tinckam, K.; Butany, J.; Rao, V. Antibody-mediated rejection: An evolving entity in heart transplantation. J. Transpl. 2012, 2012, 210210. [Google Scholar] [CrossRef] [PubMed]
- Colvin, M.M.; Cook, J.L.; Chang, P.; Francis, G.; Hsu, D.T.; Kiernan, M.S.; Kobashigawa, J.A.; Lindenfeld, J.; Masri, S.C.; Miller, D.; et al. Antibody-mediated rejection in cardiac transplantation: Emerging knowledge in diagnosis and management: A scientific statement from the American Heart Association. Circulation 2015, 131, 1608–1639. [Google Scholar] [CrossRef] [Green Version]
- Mak, T.W.; Saunders, M.E. Transplantation. In The Immune Response; Mak, T.W., Saunders, M.E., Eds.; Academic Press: Cambridge, MA, USA, 2006; pp. 873–921. [Google Scholar] [CrossRef]
- Jurk, D.; Wilson, C.; Passos, J.F.; Oakley, F.; Correia-Mělo, C.; Greaves, L.; Saretzki, G.; Fox, C.; Lawless, C.; Anderson, R.; et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2014, 2, 4172. [Google Scholar] [CrossRef] [Green Version]
- Koliada, A.K.; Krasnenkov, D.S.; Vaiserman, A.M. Telomeric aging: Mitotic clock or stress indicator? Front. Genet. 2015, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Kotla, S.; Vu, H.T.; Ko, K.A.; Wang, Y.; Imanishi, M.; Heo, K.S.; Fujii, Y.; Thomas, T.N.; Gi, Y.J.; Mazhar, H.; et al. Endothelial senescence is induced by phosphorylation and nuclear export of telomeric repeat binding factor 2-interacting protein. JCI Insight 2019, 4, e124867. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.A.; Dalzell, J.R.; Berry, C.; Al-Attar, N. Primary graft dysfunction after heart transplantation: A thorn amongst the roses. Heart Fail. Rev. 2019, 24, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Subramani, S.; Aldrich, A.; Dwarakanath, S.; Sugawara, A.; Hanada, S. Early Graft Dysfunction Following Heart Transplant: Prevention and Management. Semin. Cardiothorac. Vasc. Anesth. 2020, 24, 24–33. [Google Scholar] [CrossRef]
- Weis, M.; Cooke, J.P. Cardiac allograft vasculopathy and dysregulation of the NO synthase pathway. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Akawi, O.; Fox, S.A.; Li, F.; O’Neil, C.; Balint, B.; Arpino, J.M.; Watson, A.; Wong, J.; Guo, L.; et al. Cardiac-referenced leukocyte telomere length and outcomes after cardiovascular surgery. JACC Basic Transl. Sci. 2018, 3, 591–600. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Recipients | Donors | p Value |
---|---|---|---|
N (male/female) | 383 (308/75) | 384 (294/90) | ns |
Age (years) | 50.7 ± 11.9 | 38.8 ± 12.0 | <0.0001 |
ArTL (T/S ratio) | 0.84 ± 0.28 | 0.99 ± 0.31 | <0.0001 |
Primary heart disease (N) | |||
Dilated cardiomyopathy | 163 | ||
Coronary artery disease | 155 | ||
Congenital heart defects | 31 | ||
Others | 34 | ||
LVAD before heart transplantation (N/%) | 116 (30.3%) | ||
LVAD support duration (days) | 201 (327.8) | ||
Rejection | |||
ACR | 142 | ||
AMR | 35 | ||
Cardiac allograft vasculopathy | 58 | ||
Chronic graft dysfunction | 57 | ||
Survival time (years) | 4.7 (7.8) | ||
Death (N) | 152 |
SNP (Gene) | Genotype | Recipients | Donors | p Value | ||
---|---|---|---|---|---|---|
N | % | N | % | |||
rs12696304 (TERC) | CC | 202 | 53 | 205 | 53.7 | 0.92 |
CG | 155 | 40.7 | 151 | 39.5 | ||
GG | 24 | 6.3 | 26 | 6.8 | ||
rs3784929 (TERF2IP) | AA | 289 | 75.5 | 309 | 80.7 | 0.21 |
AG | 87 | 22.7 | 69 | 18 | ||
GG | 7 | 1.8 | 5 | 1.3 | ||
rs8053257 (TERF2IP) | GG | 337 | 86.7 | 339 | 88.5 | 0.43 |
GA + AA | 51 | 13.3 | 44 | 11.5 | ||
rs4387287 (OBFC1) | CC | 232 | 61.4 | 229 | 60.4 | 0.60 |
CA | 136 | 36 | 135 | 35.6 | ||
AA | 10 | 2.6 | 15 | 4 |
(A) Recipients | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP (Gene) | Genotype | ACR | AMR | CGD | CAV | ||||||||||||||||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ||||||||||||||
N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | ||
rs12696304 (TERC) | CC | 131 | 64.9 | 71 | 35.1 | 0.38 | 181 | 89.6 | 21 | 10.4 | 0.78 | 166 | 82.6 | 35 | 17.4 | 0.43 | 86 | 72.3 | 33 | 27.7 | 0.10 |
CG | 84 | 57.5 | 62 | 42.5 | 134 | 91.8 | 12 | 8.2 | 127 | 87 | 19 | 13 | 61 | 71.7 | 24 | 28.2 | |||||
GG | 15 | 62.5 | 9 | 37.5 | 22 | 91.7 | 2 | 8.3 | 21 | 87.5 | 3 | 12.5 | 12 | 100 | 0 | 0 | |||||
rs3784929 (TERF2IP) | AA | 172 | 61.2 | 109 | 38.8 | 0.87 | 256 | 91.1 | 25 | 8.9 | 0.52 | 241 | 85.8 | 40 | 14.2 | 0.44 | 121 | 73.8 | 43 | 26.2 | 0.79 |
AG | 55 | 64 | 31 | 36 | 76 | 88.4 | 10 | 11.6 | 68 | 80 | 17 | 20 | 36 | 73.5 | 13 | 26.5 | |||||
GG | 4 | 57.1 | 3 | 42.9 | 7 | 100 | 0 | 0 | 6 | 85.7 | 1 | 14.3 | 3 | 60 | 2 | 40 | |||||
rs8053257 (TERF2IP) | GG | 198 | 60.9 | 127 | 39.1 | 0.39 | 296 | 91.1 | 29 | 8.9 | 0.46 | 274 | 84.6 | 50 | 15.4 | 0.87 | 136 | 73.1 | 50 | 26.9 | 0.82 |
GA + AA | 33 | 67.4 | 16 | 32.7 | 43 | 87.8 | 6 | 12.2 | 41 | 83.7 | 8 | 16.3 | 24 | 75 | 8 | 25 | |||||
rs4387287 (OBFC1) | CC | 142 | 62.8 | 84 | 37.2 | 0.53 | 206 | 91.2 | 20 | 8.8 | 0.87 | 185 | 82.2 | 40 | 17.8 | 0.19 | 100 | 72.5 | 38 | 27.5 | 0.45 |
CA | 82 | 61.2 | 52 | 38.8 | 120 | 89.6 | 14 | 10.4 | 117 | 87.3 | 17 | 12.7 | 55 | 77.5 | 16 | 22.5 | |||||
AA | 4 | 44.4 | 5 | 55.6 | 8 | 88.9 | 1 | 11.1 | 9 | 100 | 0 | 0 | 4 | 57.1 | 3 | 42.9 | |||||
(B)Donors | |||||||||||||||||||||
SNP (Gene) | Genotype | ACR | AMR | CGD | CAV | ||||||||||||||||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ||||||||||||||
N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | ||
rs12696304 (TERC) | CC | 116 | 58.9 | 81 | 41.1 | 0.44 | 175 | 88.8 | 22 | 11.2 | 0.34 | 162 | 81.8 | 36 | 18.2 | * 0.055 | 81 | 69.8 | 35 | 30.2 | 0.34 |
CG | 98 | 65.3 | 52 | 34.7 | 140 | 93.3 | 10 | 6.7 | 131 | 89.7 | 15 | 10.3 | 65 | 77.4 | 19 | 22.6 | |||||
GG | 17 | 65.4 | 9 | 34.6 | 24 | 92.3 | 2 | 7.7 | 19 | 76 | 6 | 24 | 14 | 82.4 | 3 | 17.6 | |||||
rs3784929 (TERF2IP) | AA | 183 | 60.6 | 119 | 39.4 | 0.28 | 274 | 91.6 | 25 | 8.4 | * 0.048 | 250 | 83.1 | 51 | 16.9 | 0.26 | 129 | 73.3 | 47 | 26.7 | 0.89 |
AG | 46 | 68.7 | 21 | 31.3 | 59 | 88.1 | 8 | 11.9 | 60 | 89.6 | 7 | 10.4 | 29 | 76.3 | 9 | 23.7 | |||||
GG | 2 | 40 | 3 | 60 | 3 | 60 | 2 | 40 | 5 | 100 | 0 | 0 | 2 | 66.7 | 1 | 33.3 | |||||
rs8053257 (TERF2IP) | GG | 204 | 61.3 | 129 | 38.7 | 0.49 | 303 | 90.9 | 30 | 9.1 | 0.54 | 279 | 84.1 | 53 | 15.9 | 0.49 | 143 | 73.3 | 52 | 26.7 | 0.95 |
GA + AA | 28 | 66.7 | 14 | 33.3 | 37 | 88.1 | 5 | 11.9 | 37 | 88.1 | 5 | 11.9 | 17 | 73.9 | 6 | 26.1 | |||||
rs4387287 (OBFC1) | CC | 139 | 61.8 | 86 | 38.2 | 0.69 | 207 | 92 | 18 | 8 | 0.49 | 193 | 85.8 | 32 | 14.2 | 0.67 | 103 | 76.3 | 32 | 23.7 | 0.11 |
CA | 84 | 64.1 | 47 | 35.9 | 116 | 88.6 | 15 | 11.4 | 107 | 82.3 | 23 | 17.7 | 51 | 69.9 | 22 | 30.1 | |||||
AA | 8 | 53.3 | 7 | 46.7 | 13 | 86.7 | 2 | 13.3 | 13 | 86.7 | 2 | 13.3 | 3 | 42.9 | 4 | 57.1 |
GRS Recipients | ACR | AMR | CGD | CAV | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | |||||||||||||
N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | |
0 | 62 | 70.5 | 26 | 29.5 | 0.79 | 81 | 92.1 | 7 | 7.9 | 0.64 | 71 | 80.7 | 17 | 19.3 | 0.43 | 40 | 69 | 18 | 31 | 0.53 |
1 | 82 | 57.3 | 61 | 42.7 | 131 | 91.6 | 12 | 8.4 | 118 | 83.1 | 24 | 16.9 | 57 | 75 | 19 | 25 | ||||
2 | 40 | 55.6 | 32 | 44.4 | 64 | 88.9 | 8 | 11.1 | 70 | 97.2 | 2 | 2.8 | 30 | 76.9 | 9 | 23.1 | ||||
3 | 21 | 70 | 9 | 30 | 26 | 86.7 | 4 | 13.3 | 20 | 66.7 | 10 | 33.3 | 13 | 61.9 | 8 | 38.1 | ||||
4 | 15 | 62.5 | 9 | 37.5 | 22 | 91.7 | 2 | 8.3 | 22 | 91.7 | 2 | 8.3 | 12 | 85.7 | 2 | 14.3 | ||||
5 | 8 | 72.7 | 3 | 27.3 | 10 | 90.9 | 1 | 9.1 | 9 | 81.8 | 2 | 18.2 | 4 | 66.7 | 2 | 33.3 | ||||
6 | 1 | 50 | 1 | 50 | 2 | 100 | 0 | 0 | 2 | 100 | 0 | 0 | 2 | 100 | 0 | 0 | ||||
GRS Donors | ACR | AMR | CGD | CAV | ||||||||||||||||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | |||||||||||||
N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | N | % | N | % | p | |
0 | 55 | 59.8 | 37 | 40.2 | 0.20 | 80 | 87 | 12 | 13 | 0.38 | 76 | 82.6 | 16 | 17.4 | 0.29 | 39 | 69.6 | 17 | 30.4 | 0.93 |
1 | 78 | 55.3 | 63 | 44.7 | 132 | 93.6 | 9 | 6.4 | 121 | 85.2 | 21 | 14.8 | 66 | 77.7 | 19 | 22.3 | ||||
2 | 58 | 71.6 | 23 | 28.4 | 75 | 92.6 | 6 | 7.4 | 67 | 84.8 | 12 | 15.2 | 28 | 68.3 | 13 | 21.7 | ||||
3 | 21 | 75 | 7 | 25 | 26 | 92.9 | 2 | 7.1 | 21 | 75 | 7 | 25 | 13 | 68.4 | 6 | 31.6 | ||||
4 | 11 | 61.1 | 7 | 38.9 | 16 | 88.9 | 2 | 11.1 | 17 | 94.4 | 1 | 5.6 | 6 | 100 | 0 | 0 | ||||
5 | 7 | 58.3 | 5 | 41.7 | 8 | 66.7 | 4 | 33.3 | 12 | 100 | 0 | 0 | 6 | 66.7 | 3 | 33.3 |
SNPs (Gene) | Genotype | (A) Recipients | Donors | ||||
---|---|---|---|---|---|---|---|
N | Mean ± SD | p | N | Mean ± SD | p | ||
rs12696304 (TERC) | CC | 197 | 0.84 ± 0.28 | 0.95 | 194 | 0.98 ± 0.30 | 0.41 |
CG | 149 | 0.84 ± 0.30 | 143 | 0.99 ± 0.32 | |||
GG | 23 | 0.82 ± 0.21 | 23 | 1.09 ± 0.39 | |||
rs3784929 (TERF2IP) | GG + AG | 92 | 0.84 ± 0.32 | 0.75 | 70 | 0.99 ± 0.32 | 0.78 |
AA | 279 | 0.84 ± 0.27 | 290 | 0.99 ± 0.32 | |||
rs8053257 (TERF2IP) | AA + AG | 50 | 0.83 ± 0.27 | 0.80 | 41 | 0.91 ± 0.30 | 0.06 |
GG | 321 | 0.84 ± 0.29 | 320 | 1.01 ± 0.32 | |||
rs4387287 (OBFC1) | AA + AC | 143 | 0.81 ± 0.26 | 0.12 | 144 | 0.97 ± 0.31 | 0.17 |
CC | 224 | 0.86 ± 0.29 | 212 | 1.02 ± 0.31 | |||
CC | 224 | 0.86 ± 0.29 | 212 | 1.02 ± 0.31 | |||
GRS | (B) Recipients | Donors | |||||
N | Mean ± SE | p | N | Mean ± SE | p | ||
0 | 86 | 0.89 ± 0.03 | ns | 90 | 1.03 ± 0.03 | ns | |
1 | 145 | 0.85 ± 0.03 | 133 | 0.93 ± 0.03 | |||
2 | 72 | 0.83 ± 0.04 | 82 | 1.06 ± 0.04 | |||
3+ | 68 | 0.85 ± 0.04 | 55 | 0.95 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlouha, D.; Vymetalova, J.; Novakova, S.; Huckova, P.; Lanska, V.; Hubacek, J.A. Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients. Genes 2022, 13, 1855. https://doi.org/10.3390/genes13101855
Dlouha D, Vymetalova J, Novakova S, Huckova P, Lanska V, Hubacek JA. Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients. Genes. 2022; 13(10):1855. https://doi.org/10.3390/genes13101855
Chicago/Turabian StyleDlouha, Dana, Jevgenija Vymetalova, Sarka Novakova, Pavlina Huckova, Vera Lanska, and Jaroslav Alois Hubacek. 2022. "Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients" Genes 13, no. 10: 1855. https://doi.org/10.3390/genes13101855
APA StyleDlouha, D., Vymetalova, J., Novakova, S., Huckova, P., Lanska, V., & Hubacek, J. A. (2022). Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients. Genes, 13(10), 1855. https://doi.org/10.3390/genes13101855