High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway
Abstract
:1. Introduction
2. Results
2.1. RNA Sequencing, De Novo Assembly, and Functional Annotation of the E. colona Transcriptome
2.2. Identification of Differential Transcriptome between the ECO-R and ECO-S Genotypes
2.3. Identification of the Quinclorac-Induced Transcriptome in the ECO-S and ECO-R Genotypes after 24 h
2.4. Identification of Xenobiotic Detoxification Genes following Quinclorac Treatment in ECO-R
2.5. Quantitative PCR Validation of Genes Identified by Transcriptome Analysis
2.6. Sequence Analysis of Transport Inhibitor Response 1 (TIR1)
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Materials
5.2. RNA Sequencing, Transcriptome Assembly, and Functional Annotation
5.3. Gene Ontology Analysis
5.4. Differential Gene Expression
5.5. Validation of Gene Expression by RT-qPCR
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice Production Worldwide; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 247. [Google Scholar]
- Valverde, B.; Riches, C.R.; Caseley, J.C. Prevention and Management of Herbicide Resistant Weeds in Rice: Experiences from Central America with Echinochloa Colona; Cámara de Insumos Agropecuarios: San Jose, Costa Ricas, 2000. [Google Scholar]
- GBIF Secretariat. GBIF Backbone Taxonomy. 2019 04-28-2020. Available online: GBIF.org (accessed on 5 April 2018).
- Burgos, N.R.; Rouse, C.E.; Tseng, T.M.; Abugho, S.B.; Hussain, T.; Salas, R.A.; Singh, V.; Singh, S. Resistance profiles of Echinochloa colona in Arkansas. In Proceedings of the 68th Southern Weed Science Society Annual Meeting, Savannah, GA, USA, 26–29 January 2015. [Google Scholar]
- Barrett, S.H. Crop mimicry in weeds. Econ. Bot. 1983, 37, 255–282. [Google Scholar] [CrossRef]
- Yang, X.; Fuller, D.Q.; Huan, X.; Perry, L.; Li, Q.; Li, Z.; Zhang, J.; Ma, Z.; Zhuang, Y.; Jiang, L.; et al. Barnyard grasses were processed with rice around 10,000 years ago. Sci. Rep. 2015, 5, 16251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anonymous. Plants Profile for Echinochloa (Cockspur Grass); USDA Natural Resources Conservation Service. Available online: https://plants.usda.gov/core/profile?symbol=ECHIN4 (accessed on 3 July 2017).
- Smith, R.J. Competition of Barnyardgrass by Rice Cultivars. Weed Sci. 1974, 22, 423–426. [Google Scholar] [CrossRef]
- Smith, R.J. Weed Competition in Rice. Weed Sci. 1968, 16, 252–255. [Google Scholar] [CrossRef]
- Talbert, R.E.; Burgos, N.R. History and Management of Herbicide-resistant Barnyardgrass (Echinochloa crus-galli) in Arkansas Rice. Weed Technol. 2007, 21, 324–331. [Google Scholar] [CrossRef]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2012, 69, 176–187. [Google Scholar] [CrossRef]
- Kreuz, K.; Tommasini, R.; Martinoia, E. Old Enzymes for a New Job (Herbicide Detoxification in Plants). Plant Physiol. 1996, 111, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Riar, D.S.; Norsworthy, J.K.; Bond, J.A.; Bararpour, M.T.; Wilson, M.J.; Scott, R.C. Resistance of Echinochloa crus-galliPopulations to Acetolactate Synthase-Inhibiting Herbicides. Int. J. Agron. 2012, 2012, 893–953. [Google Scholar] [CrossRef] [Green Version]
- Alarcón-Reverte, R.; García, A.; Urzúa, J.; Fischer, A.J. Resistance to Glyphosate in Junglerice (Echinochloa colona) from California. Weed Sci. 2013, 61, 48–54. [Google Scholar] [CrossRef]
- Lopez-Martinez, N.; Marshall, G.; De Prado, R. Resistance of barnyardgrass (Echinochloa crus-galli) to atrazine and quinclorac. Pestic. Sci. 1997, 51, 171–175. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Graf, G.; Handel, E.D. Hydrolysis of 3′,4′-dichloropropionanilide by plant aryl acylamidases. Weed Res. 1974, 14, 371–374. [Google Scholar] [CrossRef]
- Yasuor, H.; Milan, M.; Eckert, J.W.; Fischer, A.J. Quinclorac resistance: A concerted hormonal and enzymatic effort inEchinochloa phyllopogon. Pest Manag. Sci. 2011, 68, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Cobb, A.H.; Reade, J.P. Herbicides and Plant Physiology, 2nd ed.; Cobb, A.H., Reade, J.P., Eds.; Wiley-Blackwell: Shropshire, UK, 2010; pp. 133–156. [Google Scholar]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2009, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K.; Kwiatkowski, J. The Mechanism of Quinclorac Selectivity in Grasses. Pestic. Biochem. Physiol. 2000, 66, 83–91. [Google Scholar] [CrossRef]
- Grossmann, K.; Kwiatkowski, J. Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyard grass. Pestic. Biochem. Physiol. 1995, 51, 150–160. [Google Scholar] [CrossRef]
- Rouse, C.E.; Roma-Burgos, N.; Norsworthy, J.K.; Tseng, T.-M.; Starkey, C.E.; Scott, R.C. EchinochloaResistance to Herbicides Continues to Increase in Arkansas Rice Fields. Weed Technol. 2018, 32, 34–44. [Google Scholar] [CrossRef]
- Rouse, C.E.; Roma-Burgos, N.; Barbosa Martins, B.A. Physiological assessment of non–target site restistance in multiple-resistant junglerice (Echinochloa colona). Weed Sci. 2019, 67, 622–632. [Google Scholar] [CrossRef]
- Elsayed, A.I.; Rafudeen, M.S.; Golldack, D. Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress. Plant Biol. 2014, 16, 1–8. [Google Scholar] [CrossRef]
- Sengupta, S.; Mukherjee, S.; Basak, P.; Majumder, A.L. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 2015, 6, 656. [Google Scholar] [CrossRef] [Green Version]
- Vinson, C.C.; Mota, A.P.Z.; Porto, B.N.; Oliveira, T.N.; Sampaio, I.; Lacerda, A.L.; Danchin, E.G.J.; Guimaraes, P.M.; Williams, T.C.R.; Brasileiro, A.C.M. Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. Sci. Rep. 2020, 10, 15258. [Google Scholar] [CrossRef]
- Han, Q.; Qi, J.; Hao, G.; Zhang, C.; Wang, C.A.; Dirk, L.M.; Downie, A.B.; Zhao, T. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize. Plant Cell Physiol. 2019, 61, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Atkins, C.A.; Smith, P.M.C. Translocation in Legumes: Assimilates, Nutrients, and Signaling Molecules1. Plant Physiol. 2007, 144, 550–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thu, S.W.; Lu, M.-Z.; Carter, A.M.; Collier, R.; Gandin, A.; Sitton, C.C.; Tegeder, M. Role of ureides in source-to-sink transport of photoassimilates in non-fixing soybean. J. Exp. Bot. 2020, 71, 4495–4511. [Google Scholar] [CrossRef] [PubMed]
- Ohme-Takagi, M.; Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1995, 7, 173–182. [Google Scholar] [PubMed] [Green Version]
- Song, C.P.; Agarwal, M.; Ohta, M.; Guo, Y.; Halfter, U.; Wang, P.; Zhu, J.K. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 2005, 17, 2384–2396. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K.; Hansen, H. Ethylene-triggered abscisic acid: A principle in plant growth regulation? Physiol. Plant. 2001, 113, 9–14. [Google Scholar] [CrossRef]
- Konishi, M.; Yanagisawa, S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control ofEBF2expression by EIN3. Plant J. 2008, 55, 821–831. [Google Scholar] [CrossRef]
- Chang, K.N.; Zhong, S.; Weirauch, M.T.; Hon, G.; Pelizzola, M.; Li, H.; Huang, S.S.C.; Schmitz, R.J.; Urich, M.A.; Kuo, D.; et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. elife 2013, 2, e00675. [Google Scholar] [CrossRef]
- Machingura, M.; Salomon, E.; Jez, J.M.; Ebbs, S.D. The β-cyanoalanine synthase pathway: Beyond cyanide detoxification. Plant Cell Environ. 2016, 39, 2329–2341. [Google Scholar] [CrossRef] [Green Version]
- Seifi, H.S.; Van Bockhaven, J.; Angenon, G.; Höfte, M. Glutamate metabolism in plant disease and defense: Friend or foe? Mol. Plant Microbe Interact. 2013, 26, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal 2013, 19, 998–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.G.; Lim, E.K.; Li, Y.; Kowalczyk, M.; Sandberg, G.; Hoggett, J.; Ashford, D.A.; Bowles, D.J. Identification and Biochemical Characterization of an Arabidopsis Indole-3-acetic Acid Glucosyltransferase. J. Biol. Chem. 2000, 276, 4350–4356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvesitadze, E.; Sadunishvili, T.; Kvesitadze, G. Mechanisms of organic contaminants uptake and degradation in plants. World Acad. Sci. Eng. Technol. 2009, 55, 458–468. [Google Scholar]
- Taguchi, G.; Ubukata, T.; Nozue, H.; Kobayashi, Y.; Takahi, M.; Yamamoto, H.; Hayashida, N. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J. 2010, 63, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sundaram, S.; Armitage, L.; Evans, J.P.; Hawkes, T.; Kepinski, S.; Ferro, N.; Napier, R.M. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem. Biol. 2014, 9, 673–682. [Google Scholar] [CrossRef]
- Roma-Burgos, N.; Heap, I.M.; Rouse, C.E.; Lawton-Rauh, A.L. Evolution of Herbicide-Resistant Weeds. In Weed Control: Sustainability, Hazards, and Risks in Cropping Systems Worldwide; CRC Press: Boca Raton, FL, USA, 2018; p. 678. [Google Scholar]
- Avonce, N.; Leyman, B.; Mascorro-Gallardo, J.O.; Van Dijck, P.; Thevelein, J.; Iturriaga, G. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol. 2004, 136, 3649–3659. [Google Scholar] [CrossRef] [Green Version]
- Cortina, C.; Culiáñez-Macià, F.A. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 2005, 169, 75–82. [Google Scholar] [CrossRef]
- Delorge, I.; Janiak, M.; Carpentier, S.; Van Dijck, P. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front. Plant Sci. 2014, 5, 147. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.K.; Kim, J.-K.; Owens, T.G.; Ranwala, A.P.; Choi, Y.D.; Kochian, L.; Wu, R.J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 2002, 99, 15898–15903. [Google Scholar] [CrossRef] [Green Version]
- Karim, S.; Aronsson, H.; Ericson, H.; Pirhonen, M.; Leyman, B.; Welin, B.; Mäntylä, E.; Palva, E.T.; Van Dijck, P.; Holmström, K.-O. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol. Biol. 2007, 64, 371–386. [Google Scholar] [CrossRef]
- John, R.; Raja, V.; Ahmad, M.; Jan, N.; Majeed, U.; Ahmad, S.; Yaqoob, U.; Kaul, T. Trehalose: Metabolism and Role in Stress Signaling in Plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective; Springer International Publishing: New York, NY, USA, 2016; Volume 2, pp. 261–275. [Google Scholar]
- Lunn, J.E.; Delorge, I.; Figueroa, C.M.; Van Dijck, P.; Stitt, M. Trehalose metabolism in plants. Plant J. 2014, 79, 544–567. [Google Scholar] [CrossRef] [PubMed]
- Schluepmann, H.; Pellny, T.; van Dijken, A.; Smeekens, S.; Paul, M. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2003, 100, 6849–6854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, R.; Han, K.; Heller, W.; Albert, A.; Dobrev, P.I.; Zažímalová, E.; Schäffner, A.R. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol. 2014, 201, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tognetti, V.B.; Van Aken, O.; Morreel, K.; Vandenbroucke, K.; van de Cotte, B.; De Clercq, I.; Chiwocha, S.; Fenske, R.; Prinsen, E.; Boerjan, W.; et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 2010, 22, 2660–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Liu, H.; Xiong, L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 2013, 4, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.H.; Ma, X.M.; Han, P.; Wang, B.; Sun, Y.G.; Zhang, G.Z.; Li, Y.J.; Hou, B.K. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS ONE 2013, 8, e61705. [Google Scholar] [CrossRef]
- Tanaka, K.; Hayashi, K.I.; Natsume, M.; Kamiya, Y.; Sakakibara, H.; Kawaide, H.; Kasahara, H. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 2014, 55, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.; Deng, R.; Huang, Y.; Stael, S.; Shi, J.; Shi, G.; Lv, B.; Li, Q.; Dong, Q.; Wu, Q.; et al. Diverse biological effects of glycosyltransferase genes from Tartary buckwheat. BMC Plant Biol. 2019, 19, 1–15. [Google Scholar] [CrossRef]
- Paul, M.J.; Jhurreea, D.; Zhang, Y.; Primavesi, L.F.; Delatte, T.; Schluepmann, H.; Wingler, A. Up-regulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant Signal. Behav. 2010, 5, 386–392. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhang, K.; Wang, H.; Lv, Z. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress. Front. Microbiol. 2015, 6, 438. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Yang, J.; Wang, Q.; Zhu, H.; Chen, Z.; Dao, Y.; Wang, K. Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biol. 2019, 19, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C.D. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. USA 2018, 115, E3922–E3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, J.H.; Crowe, L.M.; Chapman, D. Preservation of Membranes in Anhydrobiotic Organisms: The Role of Trehalose. Science 1984, 223, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Ali, Q.; Ashraf, M. Induction of Drought Tolerance in Maize (Zea mays L.) due to Exogenous Application of Trehalose: Growth, Photosynthesis, Water Relations and Oxidative Defence Mechanism. J. Agron. Crop Sci. 2011, 197, 258–271. [Google Scholar] [CrossRef]
- Benaroudj, N.; Lee, D.H.; Goldberg, A.L. Trehalose Accumulation during Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals. J. Biol. Chem. 2001, 276, 24261–24267. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Li, W.-M.; Wang, W. Trehalose: Protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ. Exp. Bot. 2008, 63, 378–384. [Google Scholar] [CrossRef]
- Jain, N.K.; Roy, I. Effect of trehalose on protein structure. Protein Sci. A Publ. Protein Soc. 2009, 18, 24–36. [Google Scholar] [CrossRef]
- Meßner, B.; Thulke, O.; Schäffner, A.R. Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 2003, 217, 138–146. [Google Scholar] [CrossRef]
- Yu, J.; Hu, F.; Dossa, K.; Wang, Z.; Ke, T. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. BMC Genom. 2017, 18, 474. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lin, C.; Ma, X.; Tan, Y.; Wang, J.; Zeng, M. Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange (Citrus sinensis). Front. Plant Sci. 2018, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, R.M.; Aglyamova, G.V.; Meyer, E.; Matz, M.V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom. 2015, 16, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuznetsova, I.; Lugmayr, A.; Siira, S.J.; Rackham, O.; Filipovska, A. CirGO: An alternative circular way of visualising gene ontology terms. BMC Bioinform. 2019, 20, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Gene Ontol. Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef] [Green Version]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
ECO-R | ECO-S | |||||
---|---|---|---|---|---|---|
Gene Family | Name | No. of Transcripts | Av. Fold Change | Name | No. of Transcripts | Av. Fold Change |
Cytochrome | CYP709B1 | 9 | 9.5 | CYP71A8 | 1 | 338.7 |
P450 | CYP709B1 | 7 | 7.6 | unknown | 5 | 12.2 |
CYP72A1 | 3 | 3.3 | CYP71A1 | 2 | 107 | |
CYP72C1 | 2 | 10.4 | CYP71A6 | 2 | 4.4 | |
CYP72A14 | 4 | 11.9 | CYP71A9 | 1 | 46 | |
CYP72A15 | 11 | 7.3 | CYP89A2 | 6 | 5.6 | |
CYP94C1 | 6 | 7.2 | CYP71B3 | 2 | DR | |
unknown | 3 | 8.9 | CYP71C2 | 1 | DR | |
CYP71A1 | 7 | 10.6 | CYP71D8 | 1 | DR | |
CYP71A6 | 2 | 5.7 | CYP87A3 | 4 | DR | |
CYP71A9 | 3 | 14.7 | ||||
CYP71A21 | 2 | 7.0 | ||||
CYP71B3 | 3 | 24.1 | ||||
CYP71C2 | 4 | 5.7 | ||||
CYP71D8 | 3 | 7.5 | ||||
CYP87A3 | 4 | 316.8 | ||||
CYP94B3 | 5 | 8.5 | ||||
UDP- | U72B1 | 2 | 6.9 | U74F2 | 7 | 2.6 |
glucoronosyl | U73C1 | 2 | 9.4 | U72B1 | 3 | DR |
and | U73C2 | 5 | 3.8 | U73C3 | 6 | DR |
UDP-glucosyl | U73C3 | 5 | 5.5 | U73C6 | 1 | 4.3 |
transferase | U73D1 | 5 | 8.1 | U73E1 | 1 | 10.9 |
U73E1 | 6 | 3.1 | U75D1 | 3 | DR | |
U74F2 | 2 | 5.0 | U75D1-like | 4 | DR | |
U75D1 | 3 | 17.0 | U76E3 | 2 | 11.6 | |
U75D1-like | 10 | 5.8 | U83A1 | 8 | 6.1 | |
U76F1 | 1 | 4.4 | U88A1 | 3 | 9.6 | |
U83A1 | 11 | 4.2 | unknown | 13 | 13.8 | |
U85A2 | 3 | 3.6 | ||||
U88F5 | 2 | 2.2 | ||||
ABC | unknown B | 3 | 3.2 | AB5A | 1 | 24 |
Transporters | AB20B | 1 | 3.9 | AB11B | 1 | 8.8 |
AB22G | 1 | 3.5 | AB39G | 2 | 12.9 | |
AB48G | 1 | 383.3 | unknown | 13 | 4.5 | |
AB53G | 1 | 3.2 | unknown D | 7 | DR | |
AB5G | 4 | 4.9 | AB14C | 2 | DR | |
AB6B | 1 | 2.5 | AB25B | 7 | DR | |
unknown C | 7 | 4.3 | AB26B | 2 | DR | |
AB1D | 4 | 3.3 | AB2C | 1 | DR | |
unknown D | 12 | 3.5 | AB4C | 3 | DR | |
AB14C | 3 | 3.5 | AB6I | 6 | DR | |
AB25B | 8 | 2.7 | AB7A | 1 | DR | |
AB26B | 5 | 5.1 | AB7G | 2 | DR | |
AB2C | 1 | 4.2 | AB10I | 1 | DR | |
AB4C | 4 | 4.6 | ||||
AB6I | 7 | 2.8 | ||||
AB7A | 5 | 3.2 | ||||
AB7G | 2 | 3.6 | ||||
AB10I | 2 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rangani, G.; Rouse, C.E.; Saski, C.; Noorai, R.E.; Shankar, V.; Lawton-Rauh, A.L.; Werle, I.S.; Roma-Burgos, N. High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway. Genes 2022, 13, 515. https://doi.org/10.3390/genes13030515
Rangani G, Rouse CE, Saski C, Noorai RE, Shankar V, Lawton-Rauh AL, Werle IS, Roma-Burgos N. High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway. Genes. 2022; 13(3):515. https://doi.org/10.3390/genes13030515
Chicago/Turabian StyleRangani, Gulab, Christopher E. Rouse, Christopher Saski, Rooksana E. Noorai, Vijay Shankar, Amy L. Lawton-Rauh, Isabel S. Werle, and Nilda Roma-Burgos. 2022. "High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway" Genes 13, no. 3: 515. https://doi.org/10.3390/genes13030515
APA StyleRangani, G., Rouse, C. E., Saski, C., Noorai, R. E., Shankar, V., Lawton-Rauh, A. L., Werle, I. S., & Roma-Burgos, N. (2022). High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway. Genes, 13(3), 515. https://doi.org/10.3390/genes13030515