Identification of the Complete Chloroplast Genome of Malus zhaojiaoensis Jiang and Its Comparison and Evolutionary Analysis with Other Malus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Sequencing
2.2. Chloroplast Genome Assembly and Annotation
2.3. Description of Basic Characteristics of Chloroplast Genome
2.4. Analysis of Codon Usage Characteristics and RNA Editing Sites
2.5. Chloroplast Genome Alignment, Boundary and Evolutionary Analysis
3. Results
3.1. Characteristics of the Chloroplast Genome of M. zhaojiaoensis
3.1.1. Chloroplast Genome Map and Structure
3.1.2. Gene Annotation and Classification of Chloroplast Genome
Gene Function | Gene Group | Code | Gene Number | Gene Name |
---|---|---|---|---|
Photosynthesis | Subunits of ATP synthase | atp | 6 (6) | atpA, atpB, atpE, atpF, atpH, atpI |
Subunits of photosystem II | psb | 15 (15) | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | |
Subunits of NADH-dehydrogenase | ndh | 11 (12) | ndhA, ndhB (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Subunits of cytochrome b/f complex | pet | 6 (6) | petA, petB, petD, petG, petL, petN | |
Subunits of photosystem I | psa | 5 (5) | psaA, psaB, psaC, psaI, psaJ | |
Subunit of rubisco | rbc | 1 (1) | rbcL | |
Self replication | Large subunit of ribosome | rpl | 9 (11) | rpl14, rpl16, rpl2 (×2), rpl20, rpl22, rpl23 (×2), rpl32, rpl33, rpl36 |
DNA dependent RNA polymerase | rpo | 4 (4) | rpoA, rpoB, rpoC1, rpoC2 | |
Small subunit of ribosome | rps | 12 (14) | rps11, rps12 (×2), rps14, rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7 (×2), rps8 | |
rRNA | rrn | 4 (8) | rrn4.5 (×2), rrn5 (×2), rrn16 (×2), rrn23 (×2) | |
tRNA | trn | 29 (37) | trnA-UGC (×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU (×2), trnI-GAU (×2), trnK-UUU, trnL-CAA (×2), trnL-UAA, trnL-UAG, trnM-CAU (×2), trnN-GUU (×2), trnP-UGG, trnQ-UUG, trnR-ACG (×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC (×2), trnV-UAC, trnW-CCA, trnY-GUA | |
Others | Subunit of Acetyl-CoA-carboxylase | acc | 1 (1) | accD |
c-type cytochrom synthesis gene | ccs | 1 (1) | ccsA | |
Envelop membrane protein | cem | 1 (1) | cemA | |
Protease | clp | 1 (1) | clpP | |
Maturase | mat | 1 (1) | matK | |
Unknown | Conserved open reading frames | ycf | 4 (5) | ycf1, ycf2 (×2), ycf3, ycf4 |
3.2. The Type and Distribution of Repeat Sequences
3.2.1. Simple Sequence Repeats
3.2.2. Interspersed Nuclear Elements
3.3. Relative Synonymous Codon Usage
3.4. RNA Editing Sites
3.5. Alignment of Chloroplast Genomes in Malus Species
3.6. Comparison of Chloroplast Genome Boundaries and Junction Sites
3.7. Phylogenetic Relationships Based on Chloroplast Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.-R.; Chen, L.; Teixeira da Silva, J.A.; Volk, G.M.; Wang, Q.-C. Cryobiotechnology of apple (Malus spp.): Development, progress and future prospects. Plant Cell Rep. 2018, 37, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Z.; Zhang, D.; Shen, W.; Xie, Y.; Zhang, J.; Jiang, L.; Li, X.; Shen, X.; Geng, D.; et al. Insights into the effect of human civilization on Malus evolution and domestication. Plant Biotechnol. J. 2021, 19, 2206–2220. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Fan, J.; Zhao, M.; Zhang, D.; Li, Q.; Wang, G.; Zhang, W.; Cao, F. Phenotypic variation of floral organs in Malus using frequency distribution functions. BMC Plant Biol. 2019, 19, 574. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhou, J.; Wan, H.; Zhuang, X.; Li, H.; Qin, S.; Lyu, D. Rootstock–scion interaction affects Cadmium accumulation and tolerance of Malus. Front. Plant Sci. 2020, 11, 1264. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Zhang, D.; Han, M.; Jin, X.; Zhao, C.; Wang, S.; Xing, L.; Ma, J.; Ji, J.; et al. Sequencing of a wild apple (Malus baccata) genome unravels the differences between cultivated and wild apple species regarding disease resistance and cold tolerance. G3 Genes Genomes Genet. 2019, 9, 2051–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, N.G. A new species of Malus (Rosaceae) from Sichuan. J. Southwest Agric. Univ. 1991, 13, 599–600. [Google Scholar]
- Li, Y.N. A primarily modern systematics of genus Malus Mill. in the world. J. Fruit Sci. 1996, 13, 82–92. [Google Scholar]
- Cornille, A.; Giraud, T.; Smulders, M.J.M.; Roldán-Ruiz, I.; Gladieux, P. The domestication and evolutionary ecology of apples. Trends Genet. 2014, 30, 57–65. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, W.; Zhang, B.; Fang, T.; Wang, X.-F.; Cai, Y.; Ogutu, C.; Gao, L.; Chen, G.; Nie, X.; et al. Unraveling a genetic roadmap for improved taste in the domesticated apple. Mol. Plant 2021, 14, 1454–1471. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Daniell, H.; Jin, S.; Zhu, X.-G.; Gitzendanner, M.A.; Soltis, D.E.; Soltis, P.S. Green giant—A tiny chloroplast genome with mighty power to produce high-value proteins: History and phylogeny. Plant Biotechnol. J. 2021, 19, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Wu, P.; Zhou, S.; Wang, L.; Zhou, S. The complete chloroplast genome sequence of Malus toringoides (Rosaceae). Mitochondrial DNA B Resour. 2020, 5, 2787–2789. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, Y.; Zhao, M.; Xin, H. Characterization of the complete chloroplast genome sequence of Malus kansuensis (Rosaceae). Mitochondrial DNA B Resour. 2021, 6, 108–109. [Google Scholar] [CrossRef] [PubMed]
- Lou, G.; Wang, S.; Zhang, B.; Cheng, Y.; Wang, H. The complete chloroplast genome sequence of Malus sieboldii (Rosaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour. 2020, 5, 2170–2171. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, Y.; Zhao, X.; Chen, X.; Yuan, Z. Characterization of complete chloroplast genome of Malus sylvestris L. Mitochondrial DNA B Resour. 2019, 4, 2357–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Rong, C.; Qin, L.; Mo, C.; Fan, L.; Yan, J.; Zhang, M. Complete chloroplast genome sequence of Malus hupehensis: Genome structure, comparative analysis, and phylogenetic relationships. Molecules 2018, 23, 2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Qin, L.; Yan, J.; Mo, C.; Rong, C.; Meng, Y.; Zhang, M. The complete chloroplast genome sequence of Malus prattii (Rosaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour. 2019, 4, 2171–2172. [Google Scholar] [CrossRef] [Green Version]
- Allen, G.; Flores-Vergara, M.; Krasynanski, S.; Kumar, S.; Thompson, W. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef]
- Fu, X.; Ji, X.; Wang, B.; Duan, L. The complete chloroplast genome of leguminous forage Onobrychis viciifolia. Mitochondrial DNA B Resour. 2021, 6, 898–899. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Qu, X.-J.; Moore, M.J.; Li, D.-Z.; Yi, T.-S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 2019, 15, 50. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Shi, L.; Zhu, Y.; Chen, H.; Zhang, J.; Lin, X.; Guan, X. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom. 2012, 13, 715. [Google Scholar] [CrossRef] [Green Version]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mower, J.P. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37 (Suppl. 2), W253–W259. [Google Scholar] [CrossRef]
- Darzentas, N. Circoletto: Visualizing sequence similarity with Circos. Bioinformatics 2010, 26, 2620–2621. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32 (Suppl. 2), W273–W279. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Mao, Y.; Xing, Q.; Cao, M. HomBlocks: A multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 2018, 110, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Q.; Yin, P. RNA editing machinery in plant organelles. Sci. China Life Sci. 2018, 61, 162–169. [Google Scholar] [CrossRef]
- Contreras-Díaz, R.; Arias-Aburto, M.; van den Brink, L. Characterization of the complete chloroplast genome of Zephyranthes phycelloides (Amaryllidaceae, tribe Hippeastreae) from Atacama region of Chile. Saudi J. Biol. Sci. 2022, 29, 650–659. [Google Scholar] [CrossRef]
- Li, H.; Xiao, W.; Tong, T.; Li, Y.; Zhang, M.; Lin, X.; Zou, X.; Wu, Q.; Guo, X. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci. Rep. 2021, 11, 1424. [Google Scholar] [CrossRef]
- Green, B.R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 2011, 66, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; Li, M.; Xu, W.; Schwarzacher, T.; Heslop-Harrison, J.S. Comparative chloroplast genome analyses of Avena: Insights into evolutionary dynamics and phylogeny. BMC Plant Biol. 2020, 20, 406. [Google Scholar] [CrossRef]
- Xue, S.; Shi, T.; Luo, W.; Ni, X.; Iqbal, S.; Ni, Z.; Huang, X.; Yao, D.; Shen, Z.; Gao, Z. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic. Res. 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-Y.; Yang, J.-X.; Bai, M.-Z.; Zhang, G.-Q.; Liu, Z.-J. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biol. 2021, 21, 248. [Google Scholar] [CrossRef] [PubMed]
- Trofimov, D.; Cadar, D.; Schmidt-Chanasit, J.; Rodrigues de Moraes, P.L.; Rohwer, J.G. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex. Sci. Rep. 2022, 12, 1120. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, C.; Zhao, X.; Chen, S.; Qu, G.-Z. Complete chloroplast genome sequence of Betula platyphylla: Gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genom. 2018, 19, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.; Ding, R.; Zong, X.; Zhang, L.; Chen, X.; Qu, B. Structural characterization of Platanthera ussuriensis chloroplast genome and comparative analyses with other species of Orchidaceae. BMC Genom. 2022, 23, 84. [Google Scholar] [CrossRef]
- Alzahrani, D.; Albokhari, E.; Yaradua, S.; Abba, A. Complete chloroplast genome sequences of Dipterygium glaucum and Cleome chrysantha and other Cleomaceae Species, comparative analysis and phylogenetic relationships. Saudi J. Biol. Sci. 2021, 28, 2476–2490. [Google Scholar] [CrossRef]
- Volk, G.M.; Henk, A.D.; Baldo, A.; Fazio, G.; Chao, C.T.; Richards, C.M. Chloroplast heterogeneity and historical admixture within the genus Malus. Am. J. Bot. 2015, 102, 1198–1208. [Google Scholar] [CrossRef]
- Nikiforova, S.V.; Cavalieri, D.; Velasco, R.; Goremykin, V. Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol. Biol. Evol. 2013, 30, 1751–1760. [Google Scholar] [CrossRef] [Green Version]
- Coart, E.; Van Glabeke, S.; De Loose, M.; Larsen, A.S.; RoldÁN-Ruiz, I. Chloroplast diversity in the genus Malus: New insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol. Ecol. 2006, 15, 2171–2182. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Zhang, B.; Shang, F.; Wang, H. The complete chloroplast genome sequence of Malus halliana (Rosaceae), an important ornamental plant. Mitochondrial DNA B Resour. 2020, 5, 2155–2156. [Google Scholar] [CrossRef]
Gene | Type | Location | Strand | Start | End | Exon Size | Intron Number |
---|---|---|---|---|---|---|---|
rps16 | CDS | LSC | Reverse | 5247 | 6378 | 270 | 1 |
atpF | CDS | LSC | Reverse | 12,444 | 13,730 | 555 | 1 |
rpoC1 | CDS | LSC | Reverse | 21,865 | 24,651 | 2046 | 1 |
ycf3 | CDS | LSC | Reverse | 45,423 | 47,382 | 507 | 2 |
rps12 | CDS | LSC-IRB | Reverse | 73,406 | 102,714 | 372 | 2 |
rps12 | CDS | LSC-IRA | Forward | 73,406 | 146,153 | 372 | 2 |
clpP | CDS | LSC | Reverse | 73,684 | 75,746 | 591 | 2 |
petB | CDS | LSC | Forward | 78,684 | 80,128 | 648 | 1 |
petD | CDS | LSC | Forward | 80,319 | 81,525 | 483 | 1 |
rpl16 | CDS | LSC | Reverse | 85,094 | 86,489 | 408 | 1 |
rpl2 | CDS | IRB | Reverse | 88,261 | 89,771 | 825 | 1 |
ndhB | CDS | IRB | Reverse | 98,873 | 101,074 | 1533 | 1 |
ndhA | CDS | SSC | Reverse | 124,864 | 127,080 | 1092 | 1 |
ndhB | CDS | IRA | Forward | 146,995 | 149,196 | 1533 | 1 |
rpl2 | CDS | IRA | Forward | 158,298 | 159,808 | 825 | 1 |
trnK-UUU | tRNA | LSC | Reverse | 1703 | 4271 | 72 | 1 |
trnG-UCC | tRNA | LSC | Forward | 9092 | 9860 | 71 | 1 |
trnL-UAA | tRNA | LSC | Forward | 50,581 | 51,181 | 85 | 1 |
trnV-UAC | tRNA | LSC | Reverse | 54,758 | 55,424 | 75 | 1 |
trnI-GAU | tRNA | IRB | Forward | 106,519 | 107,538 | 72 | 1 |
trnA-UGC | tRNA | IRB | Forward | 107,603 | 108,482 | 73 | 1 |
trnA-UGC | tRNA | IRA | Reverse | 139,587 | 140,466 | 73 | 1 |
trnI-GAU | tRNA | IRA | Reverse | 140,531 | 141,550 | 72 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, D.; Gao, N.; Han, Y.; Wang, X.; Shen, X.; You, C. Identification of the Complete Chloroplast Genome of Malus zhaojiaoensis Jiang and Its Comparison and Evolutionary Analysis with Other Malus Species. Genes 2022, 13, 560. https://doi.org/10.3390/genes13040560
Wang X, Wang D, Gao N, Han Y, Wang X, Shen X, You C. Identification of the Complete Chloroplast Genome of Malus zhaojiaoensis Jiang and Its Comparison and Evolutionary Analysis with Other Malus Species. Genes. 2022; 13(4):560. https://doi.org/10.3390/genes13040560
Chicago/Turabian StyleWang, Xun, Daru Wang, Ning Gao, Yuepeng Han, Xiaofei Wang, Xiang Shen, and Chunxiang You. 2022. "Identification of the Complete Chloroplast Genome of Malus zhaojiaoensis Jiang and Its Comparison and Evolutionary Analysis with Other Malus Species" Genes 13, no. 4: 560. https://doi.org/10.3390/genes13040560
APA StyleWang, X., Wang, D., Gao, N., Han, Y., Wang, X., Shen, X., & You, C. (2022). Identification of the Complete Chloroplast Genome of Malus zhaojiaoensis Jiang and Its Comparison and Evolutionary Analysis with Other Malus Species. Genes, 13(4), 560. https://doi.org/10.3390/genes13040560