The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7
Abstract
:1. Introduction
2. Materials and Methods
2.1. Archaeal Strain and Growth Condition
2.2. Genomic Sequencing
2.3. Phylogenetic Analysis
2.4. Reverse Transcription qPCR (RT-qPCR) Analysis
2.5. Determination of Biomass and Bacterioruberin Accumulation
2.6. Determination of Intracellular K+, Trehalose and Glycine Betaine Concentration
2.7. Statistical Analysis
3. Results and Discussion
3.1. General Features
3.2. Genome Features and Osmoadaptive Genes
3.3. Osmoadaptive Mechanisms without Exogenous Compatible Solutes
3.4. Osmoadaptive Mechanisms with Addling Exogenous Compatible Solutes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oren, A. Life at High Salt Concentrations; Springer: New York, NY, USA, 2006; pp. 421–440. [Google Scholar]
- Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deole, R.; Challacombe, J.; Raiford, D.W.; Hoff, W.D. An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content. J. Biol. Chem. 2013, 288, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madigan, M.T.; Martinko, J.M.; Stahl, D.A.; Clark, D.P. Brock Biology of Microorganisms, 13th ed.; Pearson Education: New York, NY, USA, 2012. [Google Scholar]
- Grant, W.D. Life at low water activity. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1249–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Cui, H.L. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea. Curr. Microbiol. 2017, 75, 266–271. [Google Scholar] [CrossRef]
- Lazrak, T.; Wolff, G.; Albrecht, A.M.; Nakatani, Y.; Ourisson, G.; Kates, M. Bacterioruberins reinforce reconstituted Halobacterium lipid membranes. BBA—Biomembr. 1988, 939, 160–162. [Google Scholar] [CrossRef]
- D’Souza, S.E.; Altekar, W.; D’Souza, S.F. Adaptive response of Haloferax mediterranei to low concentrations of NaCl (<20%) in the growth medium. Arch. Microbiol. 1997, 168, 68–71. [Google Scholar] [CrossRef]
- Brown, A.D. Microbial water stress. Bacteriol. Rev 1976, 40, 803. [Google Scholar] [CrossRef]
- Galinski, E.; Trüper, H. Microbial behaviour in salt-stressed ecosystems. Fems Microbiol. Rev. 1994, 15, 95–108. [Google Scholar] [CrossRef]
- Csonka, L.N. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J. Bacteriol. 1982, 151, 1433–1443. [Google Scholar] [CrossRef] [Green Version]
- Oren, A. Bioenergetic Aspects of Halophilism. Microbiol. Mol. Biol. Rev. 1999, 63, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Lanyi, J.K. Salt-Dependent Properties ofProteins fromExtremely Halophilic Bacteria. Bacteriol. Rev. 1974, 38, 272–290. [Google Scholar] [CrossRef] [PubMed]
- Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 2003, 75, 293. [Google Scholar] [PubMed]
- Martin, D.D.; Ciulla, R.A.; Roberts, M.F. Osmoadaptation in Archaea. Appl. Environ. Microbiol. 1999, 65, 1815–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A. Halophilic Archaea. In Encyclopedia of Microbiology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Youssef, N.H.; Savage-Ashlock, K.N.; McCully, A.L.; Luedtke, B.; Shaw, E.I.; Hoff, W.D.; Elshahed, M.S. Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales. ISME J. Emultidisciplin. J. Microb. Ecol. 2014, 8, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Goh, F.; Jeon, Y.J.; Barrow, K.; Neilan, B.A.; Burns, B.P. Osmoadaptive Strategies of the Archaeon Halococcus hamelinensis Isolated from a Hypersaline Stromatolite Environment. Astrobiology 2011, 11, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Desmarais, D.; Jablonski, P.E.; Fedarko, N.S.; Roberts, M.F. 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J. Bacteriol. 1997, 179, 3146. [Google Scholar] [CrossRef] [Green Version]
- Avonce, N.; Mendoza-Vargas, A.; Morett, E.; Iturriaga, G. Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol. 2006, 6, 109. [Google Scholar] [CrossRef] [Green Version]
- Farwick, M.; Siewe, R.M.; Kramer, A. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J. Bacteriol. 1995, 177, 4690–4695. [Google Scholar] [CrossRef] [Green Version]
- Rudulier, D.L.; Strom, A.R.; Dandekar, A.M.; Smith, L.T.; Valentine, R.C. Molecular Biology of Osmoregulation. Science 1984, 224, 1064–1068. [Google Scholar] [CrossRef]
- Sakamoto, A. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plant. Plant Cell Environ. 1998, 25, 163–171. [Google Scholar] [CrossRef]
- Chen, T.; Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 2002, 5, 250–257. [Google Scholar] [CrossRef]
- Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with Water Stress: Environment of Osmolyte System. Science 1982, 217, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, W.W.; Myer, R.; Kung, T.; Anderson, E.; Koch, A.L. Growth and buoyant density of Escherichia coli at very low osmolarities. J. Bacteriol. 1995, 177, 235–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayley, S.; Lewis, B.A.; Guttman, H.J.; Record, M.T., Jr. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: Implications for protein-DNA interactions in vivo. J. Mol. Biol. 1991, 222, 281–300. [Google Scholar] [CrossRef]
- Csonka, L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 1989, 53, 121–147. [Google Scholar] [CrossRef] [PubMed]
- Saum, S.H.; Muller, V. Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: Glutamate induces proline biosynthesis in Halobacillus halophilus. J. Bacteriol. 2007, 189, 8. [Google Scholar] [CrossRef] [Green Version]
- Deole, R.; Hoff, W.D. A potassium chloride to glycine betaine osmoprotectant switch in the extreme halophile Halorhodospira halophila. Sci. Rep. 2020, 10, 3383. [Google Scholar] [CrossRef]
- Roesser, M.; Müller, V. Osmoadaptation in bacteria and archaea: Common principles and differences. Environ. Microbiol. 2010, 3, 743–754. [Google Scholar] [CrossRef]
- Kokoeva, M.V. A novel mode of sensory transduction in archaea: Binding protein-mediated chemotaxis towards osmoprotectants and amino acids. Embo J. 2014, 21, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Regev, R.; Peri, I.; Gilboa, H.; Avidor, Y. 13C NMR study of the interrelation between synthesis and uptake of compatible solutes in two moderately halophilic eubacteria. Bacterium Ba1 and Vibro costicola. Arch. Biochem. Biophys. 1990, 278, 106–112. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minoru, K.; Susumu, G.; Shuichi, K.; Yasushi, O.; Masahiro, H. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277. [Google Scholar]
- Galperin, M.Y.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015, 43, D261–D269. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jaroszewski, L.; Godzik, A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 2002, 18, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H.; Reddy, V.S.; Tamang, D.G.; Vastermark, A. The Transporter Classification Database. Nucleic Acids Res. 2013, 42, D251–D258. [Google Scholar] [CrossRef]
- Amos, B.; Rolf, A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Higgins, D.G. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, M.; Castillo, A.M.; Pagaling, E.; Heaphy, S.; Kamekura, M.; Xue, Y.; Ma, Y.; Cowan, D.A.; Jones, B.E.; Grant, W.D. Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int. J. Syst. Evol. Microbiol. 2008, 58, 2031–2035. [Google Scholar] [CrossRef]
- Cui, H.L.; Tohty, D.; Zhou, P.J.; Liu, S.J. Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int. J. Syst. Evol. Microbiol. 2006, 56, 1631–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, E.A.; Seitzer, P.M.; Tritt, A.; Larsen, D.; Krusor, M.; Yao, A.I.; Wu, D.; Madern, D.; Eisen, J.A.; Darling, A.E. Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response. PLoS Genet. 2014, 10, e1004784. [Google Scholar] [CrossRef] [PubMed]
- Schlösser, A.; Meldorf, M.; Stumpe, S.; Bakker, E.P.; Epstein, W. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 1995, 177, 1908–1910. [Google Scholar] [CrossRef] [Green Version]
- Parra-Lopez, C.; Baer, M.T.; Groisman, E.A. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. Embo J. 1993, 12, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Yamamuro, N.; Stumpe, S.; Unemoto, T.; Bakker, E.P. Cloning of the trkAH gene cluster and characterization of the Trk K+-uptake system of Vibrio alginolyticus. Microbiology 1998, 144, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Meury, J.; Kohiyama, M. ATP is required for K+ active transport in the archaebacterium Haloferax volcanii. Arch. Microbiol. 1989, 151, 530–536. [Google Scholar] [CrossRef]
- Pan, Y.T.; Carroll, J.D.; Asano, N.; Pastuszak, I.; E Da Vana, V.K.; Elbein, A.D. Trehalose synthase converts glycogen to trehalose. FEBS J. 2010, 275, 3408–3420. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Weinrick, B.; Veeraraghavan, U.; Besra, G.S.; Jacobs, W.B., Jr. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 21761–21766. [Google Scholar] [CrossRef] [Green Version]
- Holler, A.C. Stable Starch Solutions for Iodometry. Anal. Chem. 1955, 27, 866. [Google Scholar] [CrossRef]
- Jie, F.; Liu, B.; Zhang, Z.; Yan, R.; Yang, L.; Gan, F.; Huang, Y.; Chen, X.; Shen, P.; Wang, L. The Complete Genome Sequence of Natrinema sp. J7-2, a Haloarchaeon Capable of Growth on Synthetic Media without Amino Acid Supplements. PLoS ONE 2012, 7, e41621. [Google Scholar]
- Reed, R.H. Microbial water stress physiology: Principles and perspectives. Trends Biotechnol. 1990, 8, 365. [Google Scholar] [CrossRef]
- Vreeland, R.H. Mechanisms of Halotolerance in Microorganisms. CRC Crit. Rev. Microbiol. 1987, 14, 311–356. [Google Scholar] [CrossRef]
- Christian, J.; Waltho, J.A. Solute concentrations within cells of halophilic and non-halophilic bacteria. BBA—Biochim. Biophys. Acta 1962, 65, 506–508. [Google Scholar] [CrossRef]
- Mojica, F.J.; Cisneros, E.; Ferrer, C.; Rodríguez-Valera, F.; Juez, G. Osmotically induced response in representatives of halophilic prokaryotes: The bacterium Halomonas elongata and the archaeon Haloferax volcanii. J. Bacteriol. 1997, 179, 5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A.; Heldal, M.; Norland, S.; Galinski, E.A. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 2002, 6, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Pérezfillol, M.; Rodríguezvalera, F. Potassium ion accumulation in cells of different halobacteria. Microbiologia 1986, 2, 73. [Google Scholar]
- Galinski, E.A.; Trüper, H.G. Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Lett. 1982, 357–360. [Google Scholar] [CrossRef]
- Imhoff, J.F.; Rodriguez-Valera, F. Betaine is the main compatible solute of halophilic eubacteria. J. Bacteriol. 1984, 160, 478–479. [Google Scholar] [CrossRef] [Green Version]
- Courtenay, E.S.; Capp, M.W.; Anderson, C.F.; Record, M.T., Jr. Vapor Pressure Osmometry Studies of OsmolyteProtein Interactions: Implications for the Action of Osmoprotectants in Vivo and for the Interpretation of "Osmotic Stress" Experiments in Vitro. Biochemistry 2000, 39, 4455–4471. [Google Scholar] [CrossRef]
- Kunte, H.J.; Trüper, H.; Stan-Lotter, H. Halophilic microorganisms. Environ. Microbiol. Rep. 2004, 4, 185–200. [Google Scholar]
Feature | Chromosome Characteristics |
---|---|
Genome topology | circular |
Genome size (bp) | 3,085,069 |
G+C content (%) | 68.22 |
Protein coding genes | 3513 |
tRNA genes | 48 |
rRNA operons | 5 s, 16 s, 23 s |
Function | GenBank Number |
---|---|
Potassium uptake | |
Trk potassium uptake system | OM942767, OM942768, OM942769, OM942770, OM942771, OM942772, OM942773, OM942774, OM942775, OM942776, OM942777, OM942778 |
Potassium voltage gate channel (kch) | OM942779 |
Potassium discharge | |
Cation:proton antiporter (kefB) | OM942780 |
Sodium uptake | |
V-type sodium ATPase (ntp) | OM942781, OM942782, OM942783, OM942784, OM942785 |
Sodium discharge | |
Na+/H+ antiporter (nhaC) | OM942786 |
Multicomponent Na+:H+ antiporter (mrp) | OM942787, OM942788, OM942789, OM942790, OM942791, OM942792, OM942793, OM942794, OM942795 |
Trehalose biosynthesis | |
Amylase/trehalose synthase (treS) | OM942796 |
Trehalose uptake | |
Sugar ABC transporter permease (sugA) | OM942797 |
Betaine uptake | |
Betaine/carnitine/choline transporter (bcct) | OM942798, OM942799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, R.; Yang, N.; Liu, J. The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7. Genes 2022, 13, 939. https://doi.org/10.3390/genes13060939
Ding R, Yang N, Liu J. The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7. Genes. 2022; 13(6):939. https://doi.org/10.3390/genes13060939
Chicago/Turabian StyleDing, Runting, Na Yang, and Jianguo Liu. 2022. "The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7" Genes 13, no. 6: 939. https://doi.org/10.3390/genes13060939
APA StyleDing, R., Yang, N., & Liu, J. (2022). The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7. Genes, 13(6), 939. https://doi.org/10.3390/genes13060939