Gene–Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compliance with Ethical Standards
2.2. Study Population
2.3. Selection of Targeted Regions and Sequencing
2.4. Sample Preparation
2.5. Data Processing and Genotype Calling
2.6. Quality Control
2.7. Imputation
2.8. Gene–Folic Acid Interaction Analysis
2.9. Detection and Testing of De Novo Variants
2.10. Region-Based Analysis for Rare Variants
3. Results
3.1. Population
3.2. Gene–Folic Acid Interaction
3.3. De Novo Mutations
3.4. Region-Based Analysis for Rare Variants
4. Discussion
4.1. Gene–Folic Acid Interaction
4.2. De Novo Mutations
4.3. Region-Based Association Tests
4.4. Overview of Gene–Environment Interactions
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaidi, S.; Brueckner, M. Genetics and Genomics of Congenital Heart Disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef] [PubMed]
- Diab, N.S.; Barish, S.; Dong, W.; Zhao, S.; Allington, G.; Yu, X.; Kahle, K.T.; Brueckner, M.; Jin, S.C. Molecular Genetics and Complex Inheritance of Congenital Heart Disease. Genes 2021, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jin, L.; Zhang, J.; Meng, W.; Ren, A. Maternal Periconceptional Folic Acid Supplementation and Risk for Fetal Congenital Heart Defects. J. Pediatr. 2022, 240, 72–78. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, S.; Chen, R.; Tong, X.; Wu, Z.; Mo, X. Maternal Folic Acid Supplementation and the Risk of Congenital Heart Defects in Offspring: A Meta-Analysis of Epidemiological Observational Studies. Sci. Rep. 2015, 5, 8506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfield, M.A.; Collins, J.S.; Botto, L.D.; Williams, L.J.; Mai, C.T.; Kirby, R.S.; Pearson, K.; Devine, O.; Mulinare, J. National Birth Defects Prevention Network Changes in the Birth Prevalence of Selected Birth Defects after Grain Fortification with Folic Acid in the United States: Findings from a Multi-State Population-Based Study. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.A.; Cleves, M.A.; MacLeod, S.L.; Erickson, S.W.; Tang, X.; Li, J.; Li, M.; Nick, T.; Malik, S. Conotruncal Heart Defects and Common Variants in Maternal and Fetal Genes in Folate, Homocysteine, and Transsulfuration Pathways. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Erickson, S.W.; Hobbs, C.A.; Li, J.; Tang, X.; Nick, T.G.; Macleod, S.L.; Cleves, M.A. Detecting Maternal-Fetal Genotype Interactions Associated with Conotruncal Heart Defects: A Haplotype-Based Analysis with Penalized Logistic Regression. Genet. Epidemiol. 2014, 38, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.A.; Lammer, E.J.; Shaw, G.M.; Finnell, R.H.; McGehee, R.E., Jr.; Gallagher, M.; Romitti, P.A.; Murray, J.C.; McGehee, R.E.; Gallagher, M.; et al. Integration of DNA Sample Collection into a Multi-site Birth Defects Case-control Study. Teratology 2002, 66, 177–184. [Google Scholar] [CrossRef]
- Yoon, P.W.; Rasmussen, S.A.; Lynberg, M.C.; Moore, C.A.; Anderka, M.; Carmichael, S.L.; Costa, P.; Druschel, C.; Hobbs, C.A.; Romitti, P.A. The National Birth Defects Prevention Study. Public Health Rep. 2001, 116, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, M.L.; Sturchio, C.; Smith, A.; Koontz, D.; Jenkins, M.M.; Honein, M.A.; Rasmussen, S.A. Evaluation of Mailed Pediatric Buccal Cytobrushes for Use in a Case-control Study of Birth Defects. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 642–648. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinformatics 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M. A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jian, X.; Boerwinkle, E. DbNSFP v2.0: A Database of Human Non-synonymous SNVs and Their Functional Predictions and Annotations. Hum. Mutat. 2013, 34, E2393–E2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.; Kural, D.; Strömberg, M.P.; Walker, J.A.; Konkel, M.K.; Stütz, A.M.; Urban, A.E.; Grubert, F.; Lam, H.Y.K.; Lee, W.-P. A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans. PLoS Genet. 2011, 7, e1002236. [Google Scholar] [CrossRef] [Green Version]
- Marchini, J.; Howie, B.; Myers, S.; McVean, G.; Donnelly, P. A New Multipoint Method for Genome-Wide Association Studies by Imputation of Genotypes. Nat. Genet. 2007, 39, 906–913. [Google Scholar] [CrossRef]
- Howie, B.N.; Donnelly, P.; Marchini, J. A Flexible and Accurate Genotype Imputation Method for the next Generation of Genome-Wide Association Studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef] [Green Version]
- Howie, B.; Marchini, J.; Stephens, M. Genotype Imputation with Thousands of Genomes. G3 Genes|Genomes|Genet. 2011, 1, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Botto, L.D.; Mulinare, J.; Erickson, J.D. Occurrence of Congenital Heart Defects in Relation to Maternal Multivitamin Use. Am. J. Epidemiol. 2000, 151, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Botto, L.D.; Khoury, M.J.; Mulinare, J.; Erickson, J.D. Periconceptional Multivitamin Use and the Occurrence of Conotruncal Heart Defects: Results from a Population-Based, Case-Control Study. Pediatrics 1996, 98, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; O’Malley, C.D.; Wasserman, C.R.; Tolarova, M.M.; Lammer, E.J. Maternal Periconceptional Use of Multivitamins and Reduced Risk for Conotruncal Heart Defects and Limb Deficiencies among Offspring. Am. J. Med. Genet. 1995, 59, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Czeizel, A.E. Reduction of Urinary Tract and Cardiovascular Defects by Periconceptional Multivitamin Supplementation. Am. J. Med. Genet. 1996, 62, 179–183. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Toth, M.; Rockenbauer, M. Population-Based Case Control Study of Folic Acid Supplementation during Pregnancy. Teratology 1996, 53, 345–351. [Google Scholar] [CrossRef]
- Van Beynum, I.M.; Kapusta, L.; Bakker, M.K.; den Heijer, M.; Blom, H.J.; de Walle, H.E.K.; van Beynum, I.M.; Kapusta, L.; Bakker, M.K.; den Heijer, M.; et al. Protective Effect of Periconceptional Folic Acid Supplements on the Risk of Congenital Heart Defects: A Registry-Based Case-Control Study in the Northern Netherlands. Eur. Heart J. 2010, 31, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Ittu, R.; Marelli, A.J.; Mackie, A.S.; Pilote, L. Prevalence of Severe Congenital Heart Disease after Folic Acid Fortification of Grain Products: Time Trend Analysis in Quebec, Canada. BMJ 2009, 338, b1673. [Google Scholar] [CrossRef] [Green Version]
- Goh, Y.I.; Bollano, E.; Einarson, T.R.; Koren, G. Prenatal Multivitamin Supplementation and Rates of Congenital Anomalies: A Meta-Analysis. J. Obstet. Gynaecol. Can. 2006, 28, 680–689. [Google Scholar]
- Van Beynum, I.M.; den Heijer, M.; Blom, H.J.; Kapusta, L. The MTHFR 677C → T Polymorphism and the Risk of Congenital Heart Defects: A Literature Review and Meta-Analysis. QJM Int. J. Med. 2007, 100, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, C.R.; Umbach, D.M. A Hybrid Design for Studying Genetic Influences on Risk of Diseases with Onset Early in Life. Am. J. Hum. Genet. 2005, 77, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, C.R.; Wilcox, A.J.; Lie, R.T. A Log-Linear Approach to Case-Parent-Triad Data: Assessing Effects of Disease Genes That Act Either Directly or through Maternal Effects and That May Be Subject to Parental Imprinting. Am. J. Hum. Genet. 1998, 62, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Cleves, M.A.; Nick, T.G.; Li, M.; MacLeod, S.L.; Erickson, S.W.; Li, J.; Shaw, G.M.; Mosley, B.S.; Hobbs, C.A. Obstructive Heart Defects Associated with Candidate Genes, Maternal Obesity, and Folic Acid Supplementation. Am. J. Med. Genet. A 2015, 167, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, J. A Bayesian Measure of the Probability of False Discovery in Genetic Epidemiology Studies. Am. J. Hum. Genet. 2007, 81, 208–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Shete, S.; Etzel, C.J.; Scheurer, M.; Alexiou, G.; Armstrong, G.; Tsavachidis, S.; Liang, F.-W.; Gilbert, M.; Aldape, K. Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 Genes Involved in the Double-Strand Break Repair Pathway Predict Glioblastoma Survival. J. Clin. Oncol. 2010, 28, 2467–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.S.; Chang, S.; Cai, L.; Cordon-Cardo, C.; Ding, B.; Greenland, S.; He, N.; Jiang, Q.; Kheifets, L.; Le, A. Single Nucleotide Polymorphisms of 8 Inflammation-related Genes and Their Associations with Smoking-related Cancers. Int. J. Cancer 2010, 127, 2169–2182. [Google Scholar] [CrossRef]
- Park, S.L.; Bastani, D.; Goldstein, B.Y.; Chang, S.-C.; Cozen, W.; Cai, L.; Cordon-Cardo, C.; Ding, B.; Greenland, S.; He, N. Associations between NBS1 Polymorphisms, Haplotypes, and Smoking-Related Cancers. Carcinogenesis 2010, 31, 1264–1271. [Google Scholar] [CrossRef]
- Spitz, M.R.; Gorlov, I.P.; Dong, Q.; Wu, X.; Chen, W.; Chang, D.W.; Etzel, C.J.; Caporaso, N.E.; Zhao, Y.; Christiani, D.C.; et al. Multistage Analysis of Variants in the Inflammation Pathway and Lung Cancer Risk in Smokers. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- Zienolddiny, S.; Haugen, A.; Lie, J.-A.S.; Kjuus, H.; Anmarkrud, K.H.; Kjærheim, K. Analysis of Polymorphisms in the Circadian-Related Genes and Breast Cancer Risk in Norwegian Nurses Working Night Shifts. Breast Cancer Res. 2013, 15, R53. [Google Scholar] [CrossRef] [Green Version]
- Vermunt, J.K. Log-Linear Event History Analysis: A General Approach with Missing Data, Latent Variables, and Unobserved Heterogeneity; Tilburg University Press: Tilburg, The Netherlands, 1996; Volume 8. [Google Scholar]
- Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: Fast and Efficient Meta-Analysis of Genomewide Association Scans. Bioinformatics 2010, 26, 2190–2191. [Google Scholar] [CrossRef] [Green Version]
- Willer, C.J.; Sanna, S.; Jackson, A.U.; Scuteri, A.; Bonnycastle, L.L.; Clarke, R.; Heath, S.C.; Timpson, N.J.; Najjar, S.S.; Stringham, H.M. Newly Identified Loci That Influence Lipid Concentrations and Risk of Coronary Artery Disease. Nat. Genet. 2008, 40, 161–169. [Google Scholar] [CrossRef] [Green Version]
- The Genome of the Netherlands Consortium. Whole-Genome Sequence Variation, Population Structure and Demographic History of the Dutch Population. Nat. Genet. 2014, 46, 818–825. [Google Scholar] [CrossRef]
- Francioli, L.C.; Polak, P.P.; Koren, A.; Menelaou, A.; Chun, S.; Renkens, I.; van Duijn, C.M.; Swertz, M.; Wijmenga, C.; van Ommen, G. Genome-Wide Patterns and Properties of de Novo Mutations in Humans. Nat. Genet. 2015, 47, 822–826. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; O’Roak, B.J.; Smith, J.D.; Wang, G.; Hooker, S.; Santos-Cortez, R.L.P.; Li, B.; Kan, M.; Krumm, N.; Nickerson, D.A. Rare-Variant Extensions of the Transmission Disequilibrium Test: Application to Autism Exome Sequence Data. Am. J. Hum. Genet. 2014, 94, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ionita-Laza, I.; Lee, S.; Makarov, V.; Buxbaum, J.D.; Lin, X. Family-Based Association Tests for Sequence Data, and Comparisons with Population-Based Association Tests. Eur. J. Hum. Genet. 2013, 21, 1158–1162. [Google Scholar] [CrossRef]
- Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. Am. J. Hum. Genet. 2011, 89, 82–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Dayan, A.; Bertrand, R.; Beauchemin, M.; Chahla, D.; Mamo, A.; Filion, M.; Skup, D.; Massie, B.; Jolivet, J. Cloning and Characterization of the Human 5, 10-Methenyltetrahydrofolate Synthetase-Encoding CDNA. Gene 1995, 165, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Girgis, S.; Nasrallah, I.M.; Suh, J.R.; Oppenheim, E.; Zanetti, K.A.; Mastri, M.G.; Stover, P.J. Molecular Cloning, Characterization and Alternative Splicing of the Human Cytoplasmic Serine Hydroxymethyltransferase Gene. Gene 1998, 210, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Field, M.S.; Anderson, D.D.; Stover, P.J. Mthfs Is an Essential Gene in Mice and a Component of the Purinosome. Front. Genet. 2011, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Nembhard, W.N.; Tang, X.; Hu, Z.; Macleod, S.; Stowe, Z.; Webber, D. Maternal and Infant Genetic Variants, Maternal Periconceptional Use of Selective Serotonin Reuptake Inhibitors, and Risk of Congenital Heart Defects in Offspring: Population Based Study. BMJ 2017, 356, j832. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Woo, J.-S.; Schmitz, J.; Prinz, B.; Root, K.; Chen, F.; Bloch, J.S.; Zenobi, R.; Locher, K.P. Structural Basis of Transcobalamin Recognition by Human CD320 Receptor. Nat Commun 2016, 7, 12100. [Google Scholar] [CrossRef] [Green Version]
- Selhub, J. Homocysteine Metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef] [PubMed]
- Homocysteine Lowering Trialists’ Collaboration. Dose-Dependent Effects of Folic Acid on Blood Concentrations of Homocysteine: A Meta-Analysis of the Randomized Trials. Am. J. Clin. Nutr. 2005, 82, 806–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oussalah, A.; Levy, J.; Filhine-Tresarrieu, P.; Namour, F.; Gueant, J.L. Association of TCN2 Rs1801198 c.776G>C Polymorphism with Markers of One-Carbon Metabolism and Related Diseases: A Systematic Review and Meta-Analysis of Genetic Association Studies. Am. J. Clin. Nutr. 2017, 106, 1142–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, F.C.; Sides, E.G.; Mychaleckyj, J.C.; Worrall, B.B.; Elias, G.A.; Liu, Y.; Chen, W.M.; Coull, B.M.; Toole, J.F.; Rich, S.S.; et al. Transcobalamin 2 Variant Associated with Poststroke Homocysteine Modifies Recurrent Stroke Risk. Neurology 2011, 77, 1543–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkleij-Hagoort, A.; Bliek, J.; Sayed-Tabatabaei, F.; Ursem, N.; Steegers, E.; Steegers-Theunissen, R. Hyperhomocysteinemia and MTHFR Polymorphisms in Association with Orofacial Clefts and Congenital Heart Defects: A Meta-Analysis. Am. J. Med. Genet. A 2007, 143, 952–960. [Google Scholar] [CrossRef]
- Rosenquist, T.H.; Finnell, R.H. Genes, Folate and Homocysteine in Embryonic Development. Proc. Nutr. Soc. 2001, 60, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Boot, M.J.; Steegers-Theunissen, R.P.; Poelmann, R.E.; van Iperen, L.; Groot, A.C.G. Cardiac Outflow Tract Malformations in Chick Embryos Exposed to Homocysteine. Cardiovasc. Res. 2004, 64, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Rosenquist, T.H.; Ratashak, S.A.; Selhub, J. Homocysteine Induces Congenital Defects of the Heart and Neural Tube: Effect of Folic Acid. Proc. Natl. Acad. Sci. USA 1996, 93, 15227–15232. [Google Scholar] [CrossRef] [Green Version]
- Kolker, E.; Higdon, R.; Haynes, W.; Welch, D.; Broomall, W.; Lancet, D.; Stanberry, L.; Kolker, N. MOPED: Model Organism Protein Expression Database. Nucleic Acids Res. 2011, 40, D1093–D1099. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, M.; Schlegl, J.; Hahne, H.; Gholami, A.M.; Lieberenz, M.; Savitski, M.M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H. Mass-Spectrometry-Based Draft of the Human Proteome. Nature 2014, 509, 582–587. [Google Scholar] [CrossRef]
- Aicher, D.; Urbich, C.; Zeiher, A.; Dimmeler, S.; Schäfers, H.-J. Endothelial Nitric Oxide Synthase in Bicuspid Aortic Valve Disease. Ann. Thorac. Surg. 2007, 83, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A.M. Activation of Nitric Oxide Synthase in Endothelial Cells by Akt-Dependent Phosphorylation. Nature 1999, 399, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Song, W.; Lu, X.; Hamilton, J.A.; Lei, M.; Peng, T.; Yee, S.P. Development of Heart Failure and Congenital Septal Defects in Mice Lacking Endothelial Nitric Oxide Synthase. Circulation 2002, 106, 873–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.C.; Zhao, Y.D.; Courtman, D.W.; Stewart, D.J. Abnormal Aortic Valve Development in Mice Lacking Endothelial Nitric Oxide Synthase. Circulation 2000, 101, 2345–2348. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Murohara, T.; Ikeda, H.; Sasaki, K.; Shintani, S.; Akita, T.; Shimada, T.; Imaizumi, T. Hyperhomocysteinemia Impairs Angiogenesis in Response to Hindlimb Ischemia. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2579–2585. [Google Scholar] [CrossRef] [Green Version]
- Nagai, Y.; Tasaki, H.; Takatsu, H.; Nihei, S.; Yamashita, K.; Toyokawa, T.; Nakashima, Y. Homocysteine Inhibits Angiogenesis in Vitro and in Vivo. Biochem. Biophys. Res. Commun. 2001, 281, 726–731. [Google Scholar] [CrossRef]
- Kang, S.-S.; Wong, P.W.K.; Norusis, M. Homocysteinemia Due to Folate Deficiency. Metabolism 1987, 36, 458–462. [Google Scholar] [CrossRef]
- Mayo, J.N.; Chen, C.; Liao, F.; Bearden, S.E. Homocysteine Disrupts Outgrowth of Microvascular Endothelium by an INOS-Dependent Mechanism. Microcirculation 2014, 21, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Mayo, J.N.; Chen, C.-H.; Bearden, S.E. Homocysteine Disrupts Actin Organization and Vascular Outgrowth by an INOS-Dependent Mechanism during Angiogenesis. FASEB J. 2013, 27, 685.5. [Google Scholar] [CrossRef]
- Matsubara, K.; Matsubara, Y.; Hyodo, S.; Katayama, T.; Ito, M. Role of Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia. J. Obstet. Gynaecol. Res. 2010, 36, 239–247. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric Oxide Synthase in Innate and Adaptive Immunity: An Update. Trends Immunol. 2015, 36, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Cao, Y.; Li, H. Hyperglycemia Induces Inducible Nitric Oxide Synthase Gene Expression and Consequent Nitrosative Stress via C-Jun N-Terminal Kinase Activation. Am. J. Obstet. Gynecol. 2010, 203, 185.e5–185.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawerbaum, A.; Gonzalez, E.T.; Novaro, V.; Faletti, A.; Sinner, D.; Gimeno, M.A.F. Increased Prostaglandin E Generation and Enhanced Nitric Oxide Synthase Activity in the Non-Insulin-Dependent Diabetic Embryo during Organogenesis. Reprod. Fertil. Dev. 1998, 10, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.; Gilboa, S.M.; Besser, L.M.; Botto, L.D.; Moore, C.A.; Hobbs, C.A.; Cleves, M.A.; Riehle-Colarusso, T.J.; Waller, D.K.; Reece, E.A. Diabetes Mellitus and Birth Defects. Am. J. Obstet. Gynecol. 2008, 199, 237.e1–237.e9. [Google Scholar] [CrossRef] [Green Version]
- Bouzigon, E.; Monier, F.; Boussaha, M.; le Moual, N.; Huyvaert, H.; Matran, R.; Letort, S.; Bousquet, J.; Pin, I.; Lathrop, M. Associations between Nitric Oxide Synthase Genes and Exhaled NO-Related Phenotypes According to Asthma Status. PLoS ONE 2012, 7, e36672. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.S.; Mastropaolo, L.A.; Murchie, R.; Griffiths, C.; Thöni, C.; Elkadri, A.; Xu, W.; Mack, A.; Walters, T.; Guo, C. Higher Activity of the Inducible Nitric Oxide Synthase Contributes to Very Early Onset Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2014, 5, e46. [Google Scholar] [CrossRef]
- Stuart, P.E.; Nair, R.P.; Ellinghaus, E.; Ding, J.; Tejasvi, T.; Gudjonsson, J.E.; Li, Y.; Weidinger, S.; Eberlein, B.; Gieger, C. Genome-Wide Association Analysis Identifies Three Psoriasis Susceptibility Loci. Nat. Genet. 2010, 42, 1000–1004. [Google Scholar] [CrossRef]
- Soldano, K.L.; Garrett, M.E.; Cope, H.L.; Rusnak, J.M.; Ellis, N.J.; Dunlap, K.L.; Speer, M.C.; Gregory, S.G.; Ashley-Koch, A.E. Genetic Association Analyses of Nitric Oxide Synthase Genes and Neural Tube Defects Vary by Phenotype. Birth Defects Res. B Dev. Reprod. Toxicol. 2013, 98, 365–373. [Google Scholar] [CrossRef] [Green Version]
- May, D.; Blow, M.J.; Kaplan, T.; McCulley, D.J.; Jensen, B.C.; Akiyama, J.A.; Holt, A.; Plajzer-Frick, I.; Shoukry, M.; Wright, C. Large-Scale Discovery of Enhancers from Human Heart Tissue. Nat. Genet. 2012, 44, 89–93. [Google Scholar] [CrossRef]
- Kelner, M.J.; Bagnell, R.D.; Montoya, M.A.; Estes, L.A.; Forsberg, L.; Morgenstern, R. Structural Organization of the Microsomal Glutathione S-Transferase Gene (MGST1) on Chromosome 12p13.1-13.2. Identification of the Correct Promoter Region and Demonstration of Transcriptional Regulation in Response to Oxidative Stress. J. Biol. Chem. 2000, 275, 13000–13006. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Hobbs, C.A.; MacLeod, S.L.; Cleves, M.A.; Melnyk, S.; James, S.J.; Hu, P.; Erickson, S.W. Associations between Maternal Genotypes and Metabolites Implicated in Congenital Heart Defects. Mol. Genet. Metab. 2012, 107, 596–604. [Google Scholar] [CrossRef]
- Morgan, S.C.; Relaix, F.; Sandell, L.L.; Loeken, M.R. Oxidative Stress during Diabetic Pregnancy Disrupts Cardiac Neural Crest Migration and Causes Outflow Tract Defects. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.G.; McCallum, G.P.; Chen, C.S.; Henderson, J.T.; Lee, C.J.; Perstin, J.; Preston, T.J.; Wiley, M.J.; Wong, A.W. Oxidative Stress in Developmental Origins of Disease: Teratogenesis, Neurodevelopmental Deficits, and Cancer. Toxicol. Sci. 2009, 108, 4–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agopian, A.J.; Mitchell, L.E.; Glessner, J.; Bhalla, A.D.; Sewda, A.; Hakonarson, H.; Goldmuntz, E. Genome-Wide Association Study of Maternal and Inherited Loci for Conotruncal Heart Defects. PLoS ONE 2014, 9, e96057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordell, H.J.; Topf, A.; Mamasoula, C.; Postma, A.V.; Bentham, J.; Zelenika, D.; Heath, S.; Blue, G.; Cosgrove, C.; Riveron, J.G.; et al. Genome-Wide Association Study Identifies Loci on 12q24 and 13q32 Associated with Tetralogy of Fallot. Hum. Mol. Genet. 2013, 22, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.I.; Hirschhorn, J.N. Genome-Wide Association Studies: Potential next Steps on a Genetic Journey. Hum. Mol. Genet. 2008, 17, R156–R165. [Google Scholar] [CrossRef] [Green Version]
- Price, A.L.; Zaitlen, N.A.; Reich, D.; Patterson, N. New Approaches to Population Stratification in Genome-Wide Association Studies. Nat. Rev. Genet. 2010, 11, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.E.; Raebel, M.A.; Brown, J.; Lane, K.; Livingston, J.; Boudreau, D.; Rolnick, S.J.; Roblin, D.; Smith, D.H.; Willy, M.E. Use of Antidepressant Medications during Pregnancy: A Multisite Study. Am. J. Obstet. Gynecol. 2008, 198, 194.e1–194.e5. [Google Scholar] [CrossRef]
- Waller, D.K.; Shaw, G.M.; Rasmussen, S.A.; Hobbs, C.A.; Canfield, M.A.; Siega-Riz, A.-M.; Gallaway, M.S.; Correa, A. Prepregnancy Obesity as a Risk Factor for Structural Birth Defects. Arch. Pediatr. Adolesc. Med. 2007, 161, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Crider, K.S.; Cleves, M.A.; Reefhuis, J.; Berry, R.J.; Hobbs, C.A.; Hu, D.J. Antibacterial Medication Use during Pregnancy and Risk of Birth Defects: National Birth Defects Prevention Study. Arch. Pediatr. Adolesc. Med. 2009, 163, 978. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Cleves, M.A.; Honein, M.A.; Romitti, P.A.; Botto, L.D.; Yang, S.; Hobbs, C.A. Maternal Smoking and Congenital Heart Defects. Pediatrics 2008, 121, e810–e816. [Google Scholar] [CrossRef]
- Ethen, M.K.; Ramadhani, T.A.; Scheuerle, A.E.; Canfield, M.A.; Wyszynski, D.F.; Druschel, C.M.; Romitti, P.A. Alcohol Consumption by Women before and during Pregnancy. Matern. Child Health J. 2009, 13, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Reefhuis, J.; Gilboa, S.M.; Anderka, M.; Browne, M.L.; Feldkamp, M.L.; Hobbs, C.A.; Jenkins, M.M.; Langlois, P.H.; Newsome, K.B.; Olshan, A.F. The National Birth Defects Prevention Study: A Review of the Methods. Birth Defects Res. A Clin. Mol. Teratol. 2015, 103, 656–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skol, A.D.; Scott, L.J.; Abecasis, G.R.; Boehnke, M. Joint Analysis Is More Efficient than Replication-Based Analysis for Two-Stage Genome-Wide Association Studies. Nat. Genet. 2006, 38, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; García, F.A.R.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; Landefeld, C.S. Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement. JAMA 2017, 317, 183–189. [Google Scholar]
Discovery Phase | Discovery Phase | Replication Phase | |
---|---|---|---|
Microarray a | Sequencing b | Sequencing b | |
Sample size, post-QC (n) | |||
Total participants | 4648 | 536 | 740 |
Case families | 616 | 186 | 251 |
Case parental trios | 230 | 97 | 230 |
Control families | 1645 | 37 | 6 |
Control parental trios | 559 | 29 | 2 |
Genomic Variants | |||
Number of assayed genes | 60 | 13 | 13 |
Number of variants genotyped | 1536 | 9402 | 9402 |
Number of variants imputed (post-QC) | 3505 | 9588 | 9588 |
Imputed variants shared between studies | 2945 | 2945 | 2945 |
Genotype concordance c | 99.0% | NA | |
Imputed concordance c | 97.9% | NA | |
Analysis | |||
Hybrid log-linear model of gene-folate interactions | Yes | NA | Yes |
Region-based analysis for rare variants | No | Yes | Yes |
De novo variant detection | No | Yes | Yes |
CTD (n = 436) | Controls (n = 40) a | p-Value b | ||
---|---|---|---|---|
Age at delivery (years) | 28.3 (5.79) | 27.1 (5.71) | 0.23 | |
Race | Caucasian | 298 (68.7%) | 33 (86.8%) | 0.05 |
Hispanic | 75 (17.3%) | 1 (2.6%) | ||
African American | 29 (6.7%) | 2 (5.3%) | ||
Other | 32 (7.3%) | 2 (5.3%) | ||
Education | Less than 12 years | 45 (10.3%) | 1 (2.6%) | 0.25 |
High school or equivalent | 100 (23.0%) | 13 (34.2%) | ||
1–3 years of college | 133 (30.6%) | 10 (26.3%) | ||
Bachelors or 4 years college | 156 (35.9%) | 14 (36.8%) | ||
Household income | Less than $10,000 | 46 (24.1%) | 3 (15%) | 0.58 |
$10,000–$30,000 | 57 (29.8%) | 9 (45%) | ||
$30,000–$50,000 | 39 (20.4%) | 4 (20%) | ||
Over $50,000 | 49 (25.7%) | 4 (20%) | ||
Folic acid supplementation | Unsupplemented | 176 (40.6%) | 11 (28.9%) | 0.17 |
Supplemented | 258 (59.4%) | 27 (71.1%) | ||
Alcohol consumption | Unexposed | 285 (65.7%) | 24 (63.2%) | 0.73 |
Exposed | 149 (34.3%) | 14 (36.8%) | ||
Cigarette smoking | Unexposed | 364 (84.1%) | 30 (78.9%) | 0.49 |
Exposed | 69 (15.9%) | 8 (28.1%) | ||
Missing | 1 | 0 | ||
Maternal BMI | Underweight (BMI < 18.5) | 19 (4.5%) | 2 (5.3%) | 0.04 |
Normal wt. (BMI 18.5–25) | 190 (44.8%) | 25 (65.8%) | ||
Overweight (BMI 25–30) | 116 (27.4%) | 8 (21.1%) | ||
Obese (BMI > 30) | 99 (23.3%) | 3 (7.9%) | ||
Missing | 10 | 0 |
p-Value | BFDP | Folate Supp. | RR and 95% CI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | SNP | Location | Disc. | Rep. | Meta | Disc. | Rep. | Meta | Discovery | Replication | Meta | |
SNPs with fetal gene-by-folate interactions | ||||||||||||
MTHFS | rs12438477 a | chr15:80,178,283 | 1.38 × 10−3 | 8.58 × 10−3 | 4.02 × 10−5 | 0.61 | 0.88 | 0.12 | No | 1.49 [1.12,1.97] | 1.26 [0.81,1.95] | 1.41 [1.11,1.79] |
Yes | 0.83 [0.65,1.07] | 0.59 [0.41,0.85] | 0.74 [0.61,0.92] | |||||||||
TCN2 | rs2301957 b | chr22:31,018,817 | 1.2 × 10−2 | 1.04 × 10−2 | 4.66 × 10−4 | 0.83 | 0.88 | 0.39 | No | 1.14 [0.86,1.52] | 1.55 [1.01,2.39] | 1.25 [0.99,1.59] |
Yes | 0.72 [0.56,0.92] | 0.75 [0.52,1.08] | 0.73 [0.59,0.89] | |||||||||
SNPs with maternal gene-by-folate interactions | ||||||||||||
NOS2 | rs2779248 c | chr17:26,127,832 | 1.61 × 10−3 | 2.23 × 10−2 | 1.02 × 10−4 | 0.65 | 0.91 | 0.21 | No | 1.40 [1.05,1.87] | 1.18 [0.76,1.82] | 1.33 [1.04,1.69] |
Yes | 0.77 [0.60,0.99] | 0.59 [0.40,0.89] | 0.72 [0.58,0.89] | |||||||||
MTHFS | rs7163338 d | chr15:80,198,408 | 1.57 × 10−2 | 6.15 × 10−3 | 3.97 × 10−4 | 0.85 | 0.85 | 0.34 | No | 1.27 [0.96,1.67] | 1.49 [1.02,2.17] | 1.34 [1.07,1.67] |
Yes | 0.82 [0.65,1.05] | 0.73 [0.52,1.03] | 0.79 [0.65,0.96] |
Variant | Gene | Region | MAF a | Affected Regulatory Features b | Predicted Effects |
---|---|---|---|---|---|
chr2:25460216C > T | DNMT3A | Intron | 6.6 × 10−6 | None | Enhances cryptic SSA |
chr2:25532226T > C | DNMT3A | Intron | 3.1 × 10−4 | TFBS (YY1), DNase peak | |
chr2:25548310C > T | DNMT3A | Intron | 1.5 × 10−4 | TFBS (GATA2, REST, ZNF263), DNase peak | Enhances cryptic SSD |
chr2:25549757C > G | DNMT3A | Intron | None | TFBS (SETDB1), TF motif (EBF and EBF1), DNase Footprint, DNase peak | |
chr2:25550547A > C | DNMT3A | Intron | None | TFBS (Freac-4) | |
chr5:7875826A > G | MTRR | Intron | 4.5 × 10−4 | TFBS (Bhlhb2) | |
chr12:16503384C > A | MGST1 | Intron | None | TFBS (SMARCA4) | |
chr15:80162657C > T | MTHFS | Intron | 3.2 × 10−3 | None | Enhances cryptic SSD |
chr17:26101117A > G | NOS2 | Intron | None | TFBS (NRSE, NRSF, NFAT5) | |
chr17:26110823G > A | NOS2 | Intron | 2.0 × 10−3 | TFBS (ESR1) | |
chr18:671738C > T | ENOSF1- TYMS | Exon- Intron | 6.2 × 10−4 | TFBS (GATA1, POLR2A) | May provide new Poly-A signal for ENOSF1 3’UTR |
chr22:31009950C > T | TCN2 | Intron | None | DNase peak | Enhances cryptic SSA |
Gene | Genomic Range | FB-SKAT | RV-TDT Burden Test |
---|---|---|---|
DNMT3A | chr2:25,454,844–25,566,444 | 0.628 | 0.755 |
MRHFD2 | chr2:74,424,787–74,443,469 | 0.436 | 0.833 |
MTRR | chr5:7,868,246–7,902,214 | 0.727 | 0.867 |
GLRX | chr5:95,148,542–95,159,615 | 0.0147 | 0.392 |
GCLC | chr6:53,361,276–53,411,009 | 0.274 | 0.228 |
SOD2 | chr6:160,099,857–160,115,421 | 0.217 | 0.434 |
MGST1 | chr12:16,499,138–16,517,690 | 0.00298 | 0.67 |
MTHFS | chr15:80,134,820–80,190,536 | 0.24 | 0.605 |
SHMT1 | chr17:18,230,107–18,267,686 | 0.066 | 0.212 |
NOS2 | chr17:26,082,704–26,128,435 | 0.942 | 0.884 |
TYMS | chr18:657,140–674,589 | 0.238 | 0.322 |
GPX4 | chr19:1,103,255–1,107,846 | 0.308 | 0.0384 |
TCN2 | chr22:31,001,992–31,024,193 | 0.603 | 0.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webber, D.M.; Li, M.; MacLeod, S.L.; Tang, X.; Levy, J.W.; Karim, M.A.; Erickson, S.W.; Hobbs, C.A.; The National Birth Defects Prevention Study. Gene–Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study. Genes 2023, 14, 180. https://doi.org/10.3390/genes14010180
Webber DM, Li M, MacLeod SL, Tang X, Levy JW, Karim MA, Erickson SW, Hobbs CA, The National Birth Defects Prevention Study. Gene–Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study. Genes. 2023; 14(1):180. https://doi.org/10.3390/genes14010180
Chicago/Turabian StyleWebber, Daniel M., Ming Li, Stewart L. MacLeod, Xinyu Tang, Joseph W. Levy, Mohammad A. Karim, Stephen W. Erickson, Charlotte A. Hobbs, and The National Birth Defects Prevention Study. 2023. "Gene–Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study" Genes 14, no. 1: 180. https://doi.org/10.3390/genes14010180
APA StyleWebber, D. M., Li, M., MacLeod, S. L., Tang, X., Levy, J. W., Karim, M. A., Erickson, S. W., Hobbs, C. A., & The National Birth Defects Prevention Study. (2023). Gene–Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study. Genes, 14(1), 180. https://doi.org/10.3390/genes14010180