Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. Evaluation of SBR Resistance
2.3. Analysis of Variance
2.4. DNA Marker Analysis
2.5. Linkage Map and QTL Analyses
2.6. Identification of Candidate Gene(s) for Resistance
3. Results
3.1. Rust Disease Variation in the RIL Population and Parents
3.2. Linkage Map and QTL for Rust Disease Resistance
3.3. Candidate Genes for the qSBR18.1
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2021; Office of Agricultural Economics, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2022; pp. 50–56. [Google Scholar]
- Hartman, G.L.; Sinclair, J.B.; Rupe, J.C. Compendium of Soybean Diseases, 4th ed.; American Phytopathological Society Press: St Paul, MN, USA, 1999. [Google Scholar]
- Chander, S.; Ortega-Beltran, A.; Bandyopadhyay, R.; Sheoran, P.; Ige, G.O.; Vasconcelos, M.W.; Garcia-Oliveira, A.L. Prospects for durable resistance against an old soybean enemy: A four-decade journey from Rpp1 (Resistance to Phakopsora pachyrhizi) to Rpp7. Agronomy 2019, 9, 348. [Google Scholar] [CrossRef] [Green Version]
- Nuntapunt, M.; Srisombun, S.; Panichsukpatana, C.; Tepjun, V.; Doengputtan, P.; Kaewmeechai, S.; Chunwongse, J. First Soybean Rust Resistant Cultivar in Thailand: Chiang Mai 5. In Proceedings of the Annual Conference 2009: Research of Agronomy and Renewable Energy Plants, Surat Thani, Thailand, 7–9 September 2009. [Google Scholar]
- Ray, J.D.; Morel, W.; Smith, J.R.; Frederick, R.D.; Miles, M.R. Genetics and mapping of adult plant rust resistance in soybean PI 587886 and PI 587880A. Theor. Appl. Genet. 2009, 119, 271–280. [Google Scholar] [CrossRef]
- Hyten, D.L.; Hartman, G.L.; Nelson, R.L.; Frederick, R.D.; Concibido, V.C.; Narvel, J.M.; Cregan, P.B. Map location of the locus that confers resistance to soybean rust in soybean. Crop Sci. 2007, 47, 837–840. [Google Scholar] [CrossRef]
- Chakraborty, N.; Curley, J.; Frederick, R.; Hyten, D.; Nelson, R.; Hartman, G.; Diers, B. Mapping and confirmation of a new allele at Rpp1 from soybean PI 594538A conferring RB lesion-type resistance to soybean rust. Crop Sci. 2009, 49, 783–790. [Google Scholar] [CrossRef]
- Garcia, A.; Calvo, E.S.; de Souza Kiihl, R.A.; Harada, A.; Hiromoto, D.M.; Vieira, L.G.E. Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: Discovery of a novel locus and alleles. Theor. Appl. Genet. 2008, 117, 545–553. [Google Scholar] [CrossRef]
- Garcia, A.; Calvo, É.S.; de Souza Kiihl, R.A.; Souto, E.R.D. Evidence of a susceptible allele inverting the dominance of rust resistance in soybean. Crop Sci. 2011, 51, 32–40. [Google Scholar] [CrossRef] [Green Version]
- King, Z.R.; Childs, S.P.; Harris, D.K.; Pedley, K.F.; Buck, J.W.; Boerma, H.R.; Li, Z. A new soybean rust resistance allele from PI 423972 at the Rpp4 locus. Mol. Breed. 2007, 37, 62. [Google Scholar] [CrossRef]
- Silva, D.C.; Yamanaka, N.; Brogin, R.L.; Arias, C.A.; Nepomuceno, A.L.; Di-Mauro, A.O.; Pereira, S.S.; Nogueira, L.M.; Passianotto, A.L.; Abdelnoor, R.V. Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theor. Appl. Genet. 2008, 117, 57–63. [Google Scholar] [CrossRef]
- Lemos, N.G.; Braccini, A.D.L.; Abdelnoor, R.V.; de Oliveira, M.C.N.; Suenaga, K.; Yamanaka, N. Characterization of genes Rpp2, Rpp4, and Rpp5 for resistance to soybean rust. Euphytica 2011, 182, 53–64. [Google Scholar] [CrossRef]
- Hartwig, E.E. Identification of a fourth major gene conferring resistance to soybean rust. Crop Sci. 1986, 26, 1135–1136. [Google Scholar] [CrossRef]
- Meyer, J.D.; Silva, D.C.; Yang, C.; Pedley, K.F.; Zhang, C.; van de Mortel, M.; Hill, J.H.; Shoemaker, R.C.; Abdelnoor, R.V.; Whitham, S.A. Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiol. 2009, 150, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Smith, J.R.; Ray, J.D.; Frederick, R.D. Identification of a new soybean rust resistance gene in PI 567102B. Theor. Appl. Genet. 2012, 125, 133–142. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Swaminathan, S.; Sahu, B.B.; Leandro, L.F.; Cardinal, A.J.; Bhattacharyya, M.K.; Song, Q.; Walker, D.R.; Cianzio, S.R. Identification of a soybean rust resistance gene in PI 567104B. Theor. Appl. Genet. 2016, 129, 863–877. [Google Scholar] [CrossRef]
- Bhor, T.J.; Chimote, V.P.; Deshmukh, M.P. Molecular tagging of Asiatic soybean rust resistance in exotic genotype EC 241780 reveals complementation of two genes. Plant Breed. 2015, 134, 70–77. [Google Scholar] [CrossRef]
- Yu, N.; Kim, M.; King, Z.R.; Harris, D.K.; Buck, J.W.; Li, Z.; Diers, B.W. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970. Theor. Appl. Genet. 2015, 128, 387–396. [Google Scholar] [CrossRef]
- Monteros, M.J.; Missaoui, A.M.; Phillips, D.V.; Walker, D.R.; Boerma, H.R. Mapping and confirmation of the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Crop Sci. 2007, 47, 829–834. [Google Scholar] [CrossRef]
- Kendrick, M.D.; Harris, D.K.; Ha, B.K.; Hyten, D.L.; Cregan, P.B.; Frederick, R.D.; Boerma, H.R.; Pedley, K.F. Identification of a second Asian soybean rust resistance gene in Hyuuga soybean. Phytopathology 2011, 101, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Childs, S.P.; King, Z.R.; Walker, D.R.; Harris, D.K.; Pedley, K.F.; Buck, J.W.; Boerma, H.R.; Li, Z. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823. Theor. Appl. Genet. 2018, 131, 27–41. [Google Scholar] [CrossRef]
- Akamatsu, H.; Yamanaka, N.; Yamaoka, Y.; Soares, R.M.; Morel, W.; Ivancovich, A.J.G.; Bogado, A.N.; Kato, M.; Yorinori, J.T.; Suenaga, K. Pathogenic diversity of soybean rust in Argentina, Brazil, and Paraguay. J. Gen. Plant Pathol. 2013, 79, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Chunwongse, J.; Chunwongse, C.; Raxsapan, A.; Pokeprasert, A.; Patithayathum, N.; Phumichai, C.; Nuntapunt, M.; Dangpradub, S.; Tepjun, V.; Srisombun, S. Identification of DNA Marker Associated with Soybean Rust Resistance. In Proceedings of the VII World Soybean Research Conference, Foz Do Lguassu, PR, Brazil, 29 February–5 March 2004. [Google Scholar]
- Chanchu, T.; Somta, P.; Yimram, T.; Laosatit, K.; Kaga, A.; Srinives, P. Antagonistic pleiotropy of Ln gene controls trade-off between 2-seeded pods and 4-seeded pods in soybean. Euphytica 2022. submitted. [Google Scholar]
- Cregan, P.B.; Jarvik, T.; Bush, A.L.; Shoemaker, R.C.; Lark, K.G.; Kahler, A.L.; Kaya, N.; VanToai, T.T.; Lohnes, D.G.; Chung, J.; et al. An integrated genetic linkage map of the soybean. Crop Sci. 1999, 39, 1464–1490. [Google Scholar] [CrossRef]
- Song, Q.J.; Marek, L.F.; Shoemaker, R.C.; Lark, K.G.; Concibido, V.C.; Delannay, X.; Specht, J.E.; Cregan, P.B. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 2004, 109, 122–128. [Google Scholar] [CrossRef]
- Hisano, H.; Sato, S.; Isobe, S.; Sasamoto, S.; Wada, T.; Matsuno, A.; Fujishiro, T.; Yamada, M.; Nakayama, S.; Nakamura, Y. Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res. 2007, 14, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Shimizu, T.; Machita, K.; Tsubokura, Y.; Xia, Z.; Yamada, T.; Hajika, M.; Ishimoto, M.; Katayose, Y.; Harada, K.; et al. Development of a high-density linkage map and chromosome segment substitution lines for Japanese soybean cultivar Enrei. DNA Res. 2018, 25, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Van Ost, H.; Stam, P.; Visser, R.G.; Van Eck, H.J. RECORD: A novel method for ordering loci on a genetic linkage map. Theor. Appl. Genet. 2005, 112, 30–40. [Google Scholar] [CrossRef]
- Kosambi, D. The estimation of map distances from recombination values. Ann. Eugen. 1944, 12, 172–175. [Google Scholar] [CrossRef]
- Li, H.; Ye, G.; Wang, J. A modified algorithm for the improvement of composite interval mapping. Genetics 2007, 175, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, S.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Pedley, K.F.; Pandey, A.K.; Ruck, A.; Lincoln, L.M.; Whitham, S.A.; Graham, M.A. Rpp1 encodes a ULP1-NBS-LRR protein that controls immunity to Phakopsora pachyrhizi in soybean. Mol. Plant Microbe Interact. 2019, 32, 120–133. [Google Scholar] [CrossRef] [Green Version]
- De Young, B.J.; Innes, R.W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 2006, 7, 1243–1249. [Google Scholar] [CrossRef] [Green Version]
- Van Ooijen, G.; Mayr, G.; Kasiem, M.M.; Albrecht, M.; Cornelissen, B.J.; Takken, F.L. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J. Exp. Bot. 2008, 59, 1383–1397. [Google Scholar] [CrossRef] [Green Version]
- Bent, A.F.; Kunkel, B.N.; Dahlbeck, D.; Brown, K.L.; Schmidt, R.; Giraudat, J.; Leung, J.; Staskawicz, B.J. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 1944, 265, 1856–1860. [Google Scholar] [CrossRef]
- Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 2012, 30, 174–178. [Google Scholar] [CrossRef]
Trait | QTL Name | Linkage Group | Position (cM) | LOD Score | Flanking Markers | Percentage of Variance Explained | Additive Effect |
---|---|---|---|---|---|---|---|
Rust disease | qSBR18.1 | G | 123 | 10.90 | T001855631m—sc21_3420 | 37.55 | 0.36 |
Rust leaf chlorosis | qSBR18.1 | G | 124 | 5.94 | T001855631m—sc21_3420 | 21.74 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanchu, T.; Yimram, T.; Chankaew, S.; Kaga, A.; Somta, P. Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar. Genes 2023, 14, 19. https://doi.org/10.3390/genes14010019
Chanchu T, Yimram T, Chankaew S, Kaga A, Somta P. Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar. Genes. 2023; 14(1):19. https://doi.org/10.3390/genes14010019
Chicago/Turabian StyleChanchu, Thongchai, Tarika Yimram, Sompong Chankaew, Akito Kaga, and Prakit Somta. 2023. "Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar" Genes 14, no. 1: 19. https://doi.org/10.3390/genes14010019
APA StyleChanchu, T., Yimram, T., Chankaew, S., Kaga, A., & Somta, P. (2023). Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar. Genes, 14(1), 19. https://doi.org/10.3390/genes14010019