Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Populations
2.2. Mapping QTLRs Affecting Age at MD Death or Survival Using the F6 Population
2.3. Mapping QTLRs Affecting Daughter MD Mortality in Eight Elite Lines by Selective DNA Pooling (SDP)
2.4. Bioinformatics
2.5. Analysis of all QTLRs by Individual Genotyping
2.6. Linkage Disequilibrium (LD) in QTLRs
3. Results
3.1. Mapping of MD QTLRs in a Full-Sib Advanced Intercross F6 by Individual Genotyping
3.2. MD QTLR Mapping by Selective DNA Pooling (SDP) in Eight Pure Lines
3.3. Analysis of All Regions by Individual Genotyping
3.4. Linkage Disequilibrium among Markers from All Regions
4. Discussion
4.1. General
4.2. Detailed Analysis of Three Regions
4.2.1. QTLRs F6-1 + P-1
4.2.2. QTLR F6-2
4.2.3. QTLR P-4
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval
References
- Møller, A.P.; Sorci, G.; Erritzøe, J. Sexual dimorphism in immune defense. Am. Nat. 1998, 152, 605–619. [Google Scholar] [CrossRef]
- Caillaud, D.; Prugnolle, F.; Durand, P.; Théron, A.; De Meeûs, T. Host sex and parasite genetic diversity. Microbes Infect. 2006, 8, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Guilbault, C.; Stotland, P.; Lachance, C.; Tam, M.; Keller, A.; Thompson-Snipes, L.; Cowley, E.; Hamilton, T.A.; Eidelman, D.H.; Stevenson, M.M.; et al. Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection with Pseudomonas aeruginosa in mice. Immunology 2002, 107, 297–305. [Google Scholar] [CrossRef]
- Folstad, I.; Karter, J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 1992, 139, 603–622. [Google Scholar] [CrossRef]
- Semple, S.; Cowlishaw, G.; Bennett, P.M. Immune system evolution among anthropoid primates: Parasites, injuries and predators. Proc. R. Soc. Lond. B 2002, 269, 1031–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, E.; Altizer, S. Sex differences in immune defenses and response to parasitism in monarch butterflies. Evol. Ecol. 2009, 23, 607–620. [Google Scholar] [CrossRef]
- Cernetich, A.; Garver, L.S.; Jedlicka, A.E.; Klein, P.W.; Kumar, N.; Scott, A.L.; Klein, S.L. Involvement of gonadal steroids and gamma interferon in sex differences in response to blood-stage malaria infection. Infect. Immun. 2006, 74, 3190–3203. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Mank, J.E.; Li, J.; Yang, N.; Qu, L. Allele-Specific Expression Analysis Does Not Support Sex Chromosome Inactivation on the Chicken Z Chromosome. Genome Biol. Evol. 2017, 9, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Basilicata, M.F.; Keller Valsecchi, C.I. The good, the bad, and the ugly: Evolutionary and pathological aspects of gene dosage alterations. PLoS Genet. 2021, 17, e1009906. [Google Scholar] [CrossRef]
- Bellott, D.W.; Skaletsky, H.; Pyntikova, T.; Mardis, E.R.; Graves, T.; Kremitzki, C.; Brown, L.G.; Rozen, S.; Warren, W.C.; Wilson, R.K.; et al. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 2010, 466, 612–616. [Google Scholar] [CrossRef]
- Blagoveschensky, I.Y.; Sazanova, A.L.; Stekol’nikova, V.A.; Fomichev, K.A.; Barkova, O.Y.; Romanov, M.N.; Sazanov, A.A. Investigation of pseudoautosomal and bordering regions in avian Z and W chromosomes with the use of large insert genomic BAC clones. Genetika 2011, 47, 312–319. [Google Scholar] [CrossRef]
- Smeds, L.; Kawakami, T.; Burri, R.; Bolivar, P.; Husby, A.; Qvarnström, A.; Uebbing, S.; Ellegren, H. Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat. Commun. 2014, 5, 5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, C.; Fehler, F. Marek’s Disease: A Worldwide Problem in Marek’s Disease, An Evolving Problem; Davison, F., Nair, V., Eds.; Elsevier Ltd.: Oxford, UK, 2004; pp. 49–61. [Google Scholar] [CrossRef]
- Nair, V. Evolution of Marek’s disease—A paradigm for incessant race between the pathogen and the host. Vet. J. 2005, 170, 175–183. [Google Scholar] [CrossRef]
- Morimura, T.; Ohashi, K.; Sugimoto, C.; Onuma, M. Pathogenesis of Marek’s disease (MD) and possible mechanisms of immunity induced by MD vaccine. J. Vet. Med. Sci. 1998, 60, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.F.M.F.; Wong, C.W.; Walkden-Brown, S.W.; Colditz, I.G.; Arzey, K.E.; Groves, P.J. Immunosuppressive effects of Marek’s disease virus (MDV) and herpesvirus of turkeys (HVT) in broiler chickens and the protective effect of HVT vaccination against MDV challenge. Avian Pathol. 2002, 31, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Bettridge, J.M.; Lynch, S.E.; Brena, M.C.; Melese, K.; Dessie, T.; Terfa, Z.G.; Desta, T.T.; Rushton, S.; Hanotte, O.; Kaiser, P.; et al. Infection-interactions in Ethiopian village chickens. Prev. Vet. Med. 2014, 117, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggs, P.M.; Payne, L.N. Studies on Marek’s disease. I. Experimental transmission. J. Natl. Cancer Inst. 1967, 39, 267–280. [Google Scholar] [CrossRef] [PubMed]
- CABI. Invasive Species Compendium; CAB International: Wallingford, UK, 2021; Available online: https://www.cabidigitallibrary.org/product/qi (accessed on 1 June 2021).
- Khare, M.L.; Grun, J.; Adams, E.V. Marek’s disease in Japanese quail—A pathological, virological and serological study. Poult. Sci. 1975, 54, 2066–2068. [Google Scholar] [CrossRef]
- Gimeno, I.M.; Cortes, A.L.; Montiel, E.R.; Lemiere, S.; Pandiri, A.K.R. Effect of Diluting Marek’s Disease Vaccines on the Outcomes of Marek’s Disease Virus Infection When Challenged with Highly Virulent Marek’s Disease Viruses. Avian Dis. 2011, 55, 263–272. [Google Scholar] [CrossRef]
- Jaillon, S.; Berthenet, K.; Garlanda, C. Sexual Dimorphism in Innate Immunity. Clin. Rev. Allergy Immunol. 2019, 56, 308–321. [Google Scholar] [CrossRef]
- Nunn, C.L.; Lindenfors, P.; Pursall, E.R.; Rolff, J. On sexual dimorphism in immune function. Phil. Trans. R. Soc. B Biol. Sci. 2009, 364, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xirocostas, Z.A.; Everingham, S.E.; Moles, A.T. The sex with the reduced sex chromosome dies earlier: A comparison across the tree of life. Biol. Lett. 2020, 16, 20190867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witter, R.L. Protective Efficacy of Marek’s Disease Vaccines. In Marek’s Disease. Current Topics in Microbiology and Immunology; Hirai, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 255. [Google Scholar] [CrossRef]
- Read, A.F.; Baigent, S.J.; Powers, C.; Kgosana, L.B.; Blackwell, L.; Smith, L.P.; Kennedy, D.A.; Walkden-Brown, S.W.; Nair, V.K. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biol. 2015, 13, e1002198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boodhoo, N.; Gurung, A.; Sharif, S.; Behboudi, S. Marek’s disease in chickens: A review with focus on immunology. Vet. Res. 2016, 47, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulton, J.E.; Arango, J.; Arthur, J.A.; Settar, P.; Kreager, K.S.; O’Sullivan, N.P. Improving the outcome of a Marek’s disease challenge in multiple lines of egg type chickens. Avian Dis. 2013, 57 (Suppl. 2), 519–522. [Google Scholar] [CrossRef]
- Hayes, B.J.; Bowman, P.J.; Chamberlain, A.J.; Goddard, M.E. Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 2009, 92, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanavermaete, D.; Fostier, J.; Maenhout, S.; de Baets, B. Preservation of Genetic Variation in a Breeding Population for Long-Term Genetic Gain. G3 2020, 10, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Wolc, A.; Arango, J.; Jankowski, T.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Fernando, R.; Garrick, D.J.; Dekkers, J.C.M. Genome-wide association study for Marek’s disease mortality in layer chickens. Avian Dis. 2013, 57 (Suppl. 2), 395–400. [Google Scholar] [CrossRef]
- Miller, M.M.; Taylor, R.L., Jr. Brief review of the chicken Major Histocompatibility Complex: The genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult. Sci. 2016, 95, 375–392. [Google Scholar] [CrossRef]
- Smith, J.; Lipkin, E.; Soller, M.; Fulton, J.E.; Burt, D.W. Mapping QTL Associated with Resistance to Avian Oncogenic Marek’s Disease Virus (MDV) Reveals Major Candidate Genes and Variants. Genes 2020, 11, 1019. [Google Scholar] [CrossRef]
- Lipkin, E.; Strillacci, M.G.; Eitam, H.; Yishay, M.; Schiavini, F.; Soller, M.; Bagnato, A.; Shabtay, A. The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease. PLoS ONE 2016, 11, e0153423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, J.I. Quantitative Trait Loci Analysis in Animals, 2nd ed.; CABI Publishing: London, UK, 2009. [Google Scholar]
- Heifetz, E.M.; Fulton, J.E.; O’Sullivan, N.P.; Arthur, J.A.; Wang, J.; Dekkers, J.C.M.; Soller, M. Mapping quantitative trait loci affecting susceptibility to Marek’s disease virus in a backcross population of layer chickens. Genetics 2007, 177, 2417–2431. [Google Scholar] [CrossRef] [Green Version]
- Heifetz, E.M.; Fulton, J.E.; O’Sullivan, N.P.; Arthur, J.A.; Cheng, H.; Wang, J.; Soller, M.; Dekkers, J.C.M. Mapping QTL affecting resistance to Marek’s disease in an F6 advanced intercross population of commercial layer chickens. BMC Genom. 2009, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranis, A.; Gheyas, A.A.; Boschiero, C.; Turner, F.; Yu, L.; Smith, S.; Talbot, R.; Pirani, A.; Brew, F.; Kaiser, P.; et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genom. 2013, 14, 59. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Fernandez, A.; Bernal, M.J.; Fradejas, I.; Martin Ramírez, A.; Md Yusuf, N.A.; Lanza, M.; Hisam, S.; Pérez de Ayala, A.; Rubio, J.M. KASP: A genotyping method to rapid identification of resistance in Plasmodium falciparum. Malar. J. 2021, 20, 16. [Google Scholar] [CrossRef]
- Lipkin, E.; Dolezal, M.; Bagnato, A.; Fulton, J.E.; Settar, P.; Arango, J.; O’Sullivan, N.; Rossoni, A.; Meuwissen, T.; Watson, K.; et al. Linkage Disequilibrium and Haplotype Blocks in Cattle and Chicken Populations. In Proceedings of the Plant & Animal Genomes XXI Conference, San Diego, CA, USA, 11–16 January 2013; Genome Mapping, Tagging & Characterization; General Comparative. [Google Scholar]
- McElroy, J.P.; Dekkers, J.C.M.; Fulton, J.E.; O’Sullivan, N.P.; Soller, M.; Lipkin, E.; Zhang, W.; Koehler, K.J.; Lamont, S.J.; Cheng, H.H. Microsatellite markers associated with resistance to Marek’s disease in commercial layer chickens. Poult. Sci. 2005, 84, 1678–1688. [Google Scholar] [CrossRef]
- Barton, C.A.; Gloss, B.S.; Qu, W.; Statham, A.L.; Hacker, N.F.; Sutherland, R.L.; Clark, S.J.; O’Brien, P.M. Collagen and calcium-binding EGF domains 1 is frequently inactivated in ovarian cancer by aberrant promoter hypermethylation and modulates cell migration and survival. Br. J. Cancer 2010, 102, 87–96. [Google Scholar] [CrossRef]
- Song, J.; Chen, W.; Cui, X.; Huang, Z.; Wen, D.; Yang, Y.; Yu, W.; Cui, L.; Liu, C.Y. CCBE1 promotes tumor lymphangiogenesis and is negatively regulated by TGFβ signaling in colorectal cancer. Theranostics 2020, 10, 2327–2341. [Google Scholar] [CrossRef]
- Ni, J.; Yi, X.; Liu, Z.; Sun, W.; Yuan, Y.; Yang, J.; Jiang, H.; Shen, L.; Tang, B.; Liu, Y.; et al. Clinical findings of autosomal-dominant striatal degeneration and PDE8B mutation screening in parkinsonism and related disorders. Park. Relat. Disord. 2019, 69, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yuan, X.; Du, P.; Chen, P. High Expression of PDE8B and DUOX2 Associated with Ability of Metastasis in Thyroid Carcinoma. Comput. Math. Methods Med. 2021, 2021, 2362195. [Google Scholar] [CrossRef] [PubMed]
- Vorster, E.; Essop, F.B.; Rodda, J.L.; Krause, A. Spinal Muscular Atrophy in the Black South African Population: A Matter of Rearrangement? Front. Genet. 2020, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peissert, S.; Sauer, F.; Grabarczyk, D.B.; Braun, C.; Sander, G.; Poterszman, A.; Egly, J.M.; Kuper, J.; Kisker, C. In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair. Nat. Commun. 2020, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
QTLR | Start | End | Length | Distance |
---|---|---|---|---|
F6-1 | 3,436,518 | 9,672,022 | 6,235,505 | |
F6-2 | 21,264,317 | 23,659,630 | 2,395,314 | 11,592,295 |
F6-3 | 31,809,463 | 35,385,408 | 3,575,946 | 8,149,833 |
F6-4 | 81,712,738 | 81,894,873 | 182,136 | 46,327,330 |
F6 | QTLdb | |||
---|---|---|---|---|
QTLR | Start | End | Reference | Mb |
F6-1 | 3,436,518 | 9,672,022 | 36 | 0–19.1 |
37 | 0–36.9 | |||
41 | 9.2–10.2 | |||
F6-2 | 21,264,317 | 23,659,630 | 36 | 20.2–28.8 |
37 | 0–36.9 | |||
37 | 13.9–27.0 | |||
F6-3 | 31,809,463 | 35,385,408 | 37 | 0–36.9 |
37 | 17.1–66.9 | |||
F6-4 | 81,712,738 | 81,894,873 |
Analysis | Line | QTLR | Start | End | Length | Distance |
---|---|---|---|---|---|---|
By Line | WL2 | 1 | 6,802,425 | 7,250,635 | 448,211 | |
WL4 | 2 | 7,138,346 | 7,297,108 | 158,763 | −112,289 | |
RIR1 | 3 | 7,208,372 | 7,459,200 | 250,829 | −88,736 | |
WPR2 | 4 | 27,496,986 | 27,807,851 | 310,866 | 20,037,786 | |
WL2 | 5 | 63,831,711 | 64,162,739 | 331,029 | 36,023,860 | |
WPR2 | 6 | 78,740,304 | 79,239,183 | 498,880 | 14,577,565 | |
Consolidated across lines | WL2, WL4, RIR1 | P-1 | 6,802,425 | 7,459,200 | 656,776 | |
WPR2 | P-2 | 27,496,986 | 27,807,851 | 310,866 | 20,037,786 | |
WL2 | P-3 | 63,831,711 | 64,162,739 | 331,029 | 36,023,860 | |
WPR2 | P-4 | 78,740,304 | 79,239,183 | 498,880 | 14,577,565 |
Pools | QTLdb | ||||
---|---|---|---|---|---|
Lines | QTLR | Start | End | Reference | Mb |
WL2, WL4, RIR1 | P-1 | 6,802,425 | 7,459,200 | 37 | 0–36.9 |
WPR2 | P-2 | 27,496,986 | 27,807,851 | 37 | 0–36.9 |
36 | 20.2–28.8 | ||||
37 | 13.9–27.0 | ||||
37 | 17.1–66.9 | ||||
WL2 | P-3 | 63,831,711 | 64,162,739 | ||
WPR2 | P-4 | 78,740,304 | 79,239,183 |
QTLR | Marker/Haps | bp | Distance | Line | AcrossLines | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WL1 | WL2 | WL3 | WPR1 | WPR2 | WL4 | WL5 | RIR1 | Gene | |||||
P-4 | 73225 | 73,225,511 | 8,641,932 | 2.9 × 10−2 | 6.3 × 10−2 | 4.9 × 10−1 | 4.0 × 10−1 | GTF2H2 | |||||
P-4 | 73435 | 73,435,755 | 210,244 | 3.6 × 10−2 | 2.9 × 10−1 | 7.4 × 10−1 | 9.8 × 10−1 | ||||||
P-4 | 78892 | 78,892,243 | 5,456,488 | 1.0 × 10−8 | 1.7 × 10−4 | 6.1 × 10−2 | |||||||
P-4 | 79212 | 79,212,166 | 319,923 | 9.9 × 10−1 | 6.8 × 10−9 | 8.7 × 10−5 | 6.2 × 10−1 | 1.4 × 10−1 | 2.6 × 10−7 | ||||
P-4 | 79463 | 79,463,296 | 251,130 | 7.2 × 10−9 | 1.7 × 10−4 | 4.2 × 10−2 | |||||||
P-4 | 79671 | 79,671,839 | 208,543 | 9.6 × 10−9 | 1.7 × 10−4 | 1.3 × 10−3 | |||||||
P-4 | 79878 | 79,878,110 | 206,271 | 1. × 10−2 | 9.2 × 10−1 | 2.4E × 10−2 | 1.5 × 10−3 | 4.4 × 10−1 | |||||
P-4 | Haps | 7.2 × 10−1 | 6.3 × 10−1 | 4.6 × 10−2 | 1.9 × 10−3 |
QTLR | Marker Tests | Haplotype Tests | Sum | Confirmed | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Markers | Ac Lines | Lines | Ac Lines | ||||||||
Tests | Sig | Tests | Sig | Tests | Sig | Tests | Sig | Tests | Sig | ||
F6-1, P-1 | 50 | 4 | 26 | 5 | 6 | 2 | 0 | - | 82 | 11 | ✓ |
F6-2 | 45 | 5 | 16 | 2 | 6 | 0 | 2 | 0 | 69 | 7 | ✓ |
P-2 | 13 | 0 | 7 | 3 | 0 | - | 1 | 1 | 21 | 4 | ✓ |
F6-3 | 24 | 1 | 13 | 0 | 2 | 0 | 2 | 0 | 41 | 1 | ✓ |
P-3 | 20 | 3 | 8 | 0 | 0 | - | 1 | 0 | 29 | 3 | ✓ |
P-4 | 21 | 13 | 7 | 4 | 3 | 1 | 1 | 1 | 32 | 19 | ✓ |
F6-4 | 23 | 4 | 7 | 1 | 2 | 0 | 0 | - | 32 | 5 | ✓ |
Gene, | PDE8B | PDE8B | PDE8B | SV2C | ||
---|---|---|---|---|---|---|
Bp, | 23,073,692 | 23,086,227 | 23,217,357 | 23,250,769 | 23,277,739 | 23,651,225 |
Dis., | 12,535 | 131,130 | 33,412 | 26,970 | 373,486 | |
Marker, | 23073 | 23086 | 23217 | 23250 | 23277 | 23651 |
23073 | ||||||
23086 | 1.000 | |||||
23217 | 0.088 | 0.088 | ||||
23250 | 0.090 | 0.090 | 0.981 | |||
23277 | 0.090 | 0.090 | 0.981 | 0.990 | ||
23651 | 0.830 | 0.830 | 0.082 | 0.084 | 0.084 | |
p: | 2.82 × 10−2 | 2.82 × 10−2 | 5.10 × 10−1 | 5.12 × 10−1 | 4.88 × 10−1 | 1.61 × 10−3 |
Gene: | SV2C | ||
---|---|---|---|
bp: | 23,073,692 | 23,086,227 | 23,651,225 |
Dis.: | 12,535 | 564,998 | |
Marker: | 23073 | 23086 | 23651 |
23073 | |||
23086 | 1.000 | ||
23651 | 0.830 | 0.830 | |
p: | 2.82 × 10−2 | 2.82 × 10−2 | 1.61 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipkin, E.; Smith, J.; Soller, M.; Burt, D.W.; Fulton, J.E. Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes 2023, 14, 20. https://doi.org/10.3390/genes14010020
Lipkin E, Smith J, Soller M, Burt DW, Fulton JE. Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes. 2023; 14(1):20. https://doi.org/10.3390/genes14010020
Chicago/Turabian StyleLipkin, Ehud, Jacqueline Smith, Morris Soller, David W. Burt, and Janet E. Fulton. 2023. "Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome" Genes 14, no. 1: 20. https://doi.org/10.3390/genes14010020
APA StyleLipkin, E., Smith, J., Soller, M., Burt, D. W., & Fulton, J. E. (2023). Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes, 14(1), 20. https://doi.org/10.3390/genes14010020