The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans
Highlights
- We found no significant association between the copy number of the major urinary protein (Mup) genes and the level of commensalism with humans, as hypothesized previously.
- We conclude that the expansion of the Mup cluster, which appeared before the diversification of the house mouse subspecies, is unlikely to facilitate commensalism with humans in house mice.
- The study also highlights the potential to use wild-derived strains as a compromise between wild mice and classical laboratory strains.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. CNV
2.3. Proteomic Analysis
2.4. Statistics
3. Results
3.1. CNV
3.2. Total Urinary MUP Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- She, J.X.; Bonhomme, F.; Boursot, P.; Thaler, L.; Catzeflis, F. Molecular phylogenies in the genus Mus: Comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. Biol. J. Linn. Soc. 1990, 41, 83–103. [Google Scholar] [CrossRef]
- Geraldes, A.; Basset, P.; Gibson, B.; Smith, K.L.; Harr, B.; Yu, H.T.; Bulatova, N.; Ziv, Y.; Nachman, M.W. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol. Ecol. 2008, 17, 5349–5363. [Google Scholar] [CrossRef] [PubMed]
- Duvaux, L.; Belkhir, K.; Boulesteix, M.; Boursot, P. Isolation and gene flow: Inferring the speciation history of European house mice. Mol. Ecol. 2011, 20, 5248–5264. [Google Scholar] [CrossRef] [PubMed]
- Macholán, M.; Mrkvicová Vyskočilová, M.; Bejček, V.; Šťastný, K. Mitochondrial DNA sequence variation and evolution of Old World house mice (Mus musculus). Folia Zool. 2012, 61, 284–307. [Google Scholar] [CrossRef]
- Phifer-Rixey, M.; Harr, B.; Hey, J. Further resolution of the house mouse (Mus musculus) phylogeny by integration over isolation-with-migration histories. BMC Evol. Biol. 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Auffray, J.; Britton-Davidian, J. The house mouse and its relatives: Systematics and taxonomy. In Evolution of the House Mouse; Macholán, M., Baird, S.J.E., Munclinger, P., Piálek, J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–34. [Google Scholar] [CrossRef]
- Suzuki, H.; Aplin, K. Phylogeny and biogeography of the genus Mus in Eurasia. In Evolution of the House Mouse; Macholán, M., Baird, S.J.E., Munclinger, P., Piálek, J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 35–64. [Google Scholar] [CrossRef]
- Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; An, P.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.E.; Boursot, P.; Baron, B.; Bonhomme, F.; Hatat, D. Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 1985, 315, 70–72. [Google Scholar] [CrossRef]
- Bonhomme, F.; Guénet, J.-L.; Dod, B.; Moriwaki, K.; Bulfield, G. The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol. J. Linn. Soc. 1987, 30, 51–58. [Google Scholar] [CrossRef]
- Nagamine, C.M.; Nishioka, Y.; Moriwaki, K.; Boursot, P.; Bonhomme, F.; Lau, Y.F. The musculus-type Y chromosome of the laboratory mouse is of Asian origin. Mamm. Genome 1992, 3, 84–91. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.R.; Didion, J.P.; Buus, R.J.; Bell, T.A.; Welsh, C.E.; Bonhomme, F.; Yu, A.H.; Nachman, M.W.; Piálek, J.; et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet. 2011, 43, 648–655. [Google Scholar] [CrossRef]
- Didion, J.P.; Pardo-Manuel de Villena, F. Deconstructing Mus gemischus: Advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm. Genome 2013, 24, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Ebata, T.; Noguchi, H.; Keane, T.M.; Adams, D.J.; Narita, T.; Shin, -I.T.; Fujisawa, H.; Toyoda, A.; Abe, K.; et al. The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. Genome Res. 2013, 23, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Ferris, S.D.; Sage, R.D.; Wilson, A.C. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 1982, 295, 163–165. [Google Scholar] [CrossRef]
- Goios, A.; Pereira, L.; Bogue, M.; Macaulay, V.; Amorim, A. mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res. 2007, 17, 293–298. [Google Scholar] [CrossRef]
- Piálek, J.; Ďureje, Ľ.; Hiadlovská, Z.; Kreisinger, J.; Aghová, T.; Bryjová, A.; Čížková, D.; Fornůsková, A.; Goüy de Bellocq, J.; Hejlová, H.; et al. Wild-Derived Strains Greatly Expand the Genetic and Phenotype Variation of the House Mouse Model Organism. bioRxiv 2023. [Google Scholar] [CrossRef]
- Rusu, A.S.; Krackow, S. Kin-preferential cooperation, dominance-dependent reproductive skew, and competition for mates in communally nesting female house mice. Behav. Ecol. Sociobiol. 2004, 56, 298–305. [Google Scholar] [CrossRef]
- Cunningham, C.B.; Ruff, J.S.; Chase, K.; Potts, W.K.; Carrier, D.R. Competitive ability in male house mice (Mus musculus): Genetic influences. Behav. Genet. 2013, 43, 151–160. [Google Scholar] [CrossRef]
- Montero, I.; Teschke, M.; Tautz, D. Paternal imprinting of mating preferences between natural populations of house mice (Mus musculus domesticus). Mol. Ecol. 2013, 22, 2549–2562. [Google Scholar] [CrossRef] [PubMed]
- Krebs, R.; Linnenbrink, M.; Guenther, A. Validating standardised personality tests under seminatural conditions in wild house mice (Mus musculus domesticus). Ethology 2019, 125, 761–773. [Google Scholar] [CrossRef]
- Luzynski, K.C.; Nicolakis, D.; Marconi, M.A.; Zala, S.M.; Kwak, J.; Penn, D.J. Pheromones that correlate with reproductive success in competitive conditions. Sci. Rep. 2021, 11, 21970. [Google Scholar] [CrossRef]
- Linnenbrink, M. Competitive ability is a fast-evolving trait between house mouse populations (Mus musculus domesticus). Front. Zool. 2022, 19, 31. [Google Scholar] [CrossRef]
- König, B.; Lindholm, A.K. The complex social environment of female house mice (Mus domesticus). In Evolution of the House Mouse; Macholán, M., Baird, S.J.E., Munclinger, P., Piálek, J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 114–134. [Google Scholar]
- Lindholm, A.K.; Lopes, P.C.; Dobay, A.; Steinert, S.; Buschmann, F.J.-U. A system for automatic recording of social behavior in a free-living wild house mouse population. Anim. Biotelemetry 2015, 3, 39. [Google Scholar] [CrossRef]
- Evans, J.C.; Lindholm, A.K.; König, B. Long-term overlap of social and genetic structure in free-ranging house mice reveals dynamic seasonal and group size effects. Curr. Zool. 2021, 67, 59–69. [Google Scholar] [CrossRef]
- Guénet, J.L.; Bonhomme, F. Wild mice: An ever-increasing contribution to a popular mammalian model. Trends Genet. 2003, 19, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Piálek, J.; Vyskočilová, M.; Bímová, B.; Havelková, D.; Piálková, J.; Dufková, P.; Bencová, V.; Ďureje, Ľ.; Albrecht, T.; Hauffe, H.C.; et al. Development of unique house mouse resources suitable for evolutionary studies of speciation. J. Hered. 2008, 99, 34–44. [Google Scholar] [CrossRef]
- Phifer-Rixey, M.; Nachman, M.W. Insights into mammalian biology from the wild house mouse Mus musculus. eLife 2015, 4, e05959. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, P.A.; Malnic, B.; Buck, L.B. The mouse olfactory receptor gene family. Proc. Natl. Acad. Sci. USA 2004, 101, 2156–2161. [Google Scholar] [CrossRef]
- Rouquier, S.; Giorgi, D. Olfactory receptor gene repertoires in mammals. Mutat. Res. 2007, 616, 95–102. [Google Scholar] [CrossRef]
- Tan, L.; Xie, X.S. A near-complete spatial map of olfactory receptors in the mouse main olfactory epithelium. Chem. Senses 2018, 43, 427–432. [Google Scholar] [CrossRef]
- Stopka, P.; Stopková, R.; Janotová, K. Mechanisms of chemical communication. In Evolution of the House Mouse; Macholán, M., Baird, S.J.E., Munclinger, P., Piálek, J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 191–220. [Google Scholar] [CrossRef]
- Mucignat-Caretta, C.; Caretta, A. Message in a bottle: Major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim. Behav. 2014, 97, 255–263. [Google Scholar] [CrossRef]
- Stopková, R.; Otčenášková, T.; Matějková, T.; Kuntová, B.; Stopka, P. Biological roles of lipocalins in chemical communication, reproduction, and regulation of microbiota. Front. Physiol. 2021, 12, 740006. [Google Scholar] [CrossRef]
- Hurst, J.L.; Beynon, R.J. Scent wars: The chemobiology of competitive signalling in mice. BioEssays 2004, 26, 1288–1298. [Google Scholar] [CrossRef]
- Novotny, M.V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 2003, 31, 117–122. [Google Scholar] [CrossRef]
- Phelan, M.M.; McLean, L.; Hurst, J.L.; Beynon, R.J.; Lian, L.Y. Comparative study of the molecular variation between ‘central’ and ‘peripheral’ MUPs and significance for behavioural signalling. Biochem. Soc. Trans. 2014, 42, 866–872. [Google Scholar] [CrossRef]
- Beynon, R.J.; Hurst, J.L. Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem. Soc. Trans. 2003, 31, 142–146. [Google Scholar] [CrossRef]
- Chamero, P.; Marton, T.F.; Logan, D.W.; Flanagan, K.; Cruz, J.R.; Saghatelian, A.; Cravatt, B.F.; Stowers, L. Identification of protein pheromones that promote aggressive behaviour. Nature 2007, 450, 899–902. [Google Scholar] [CrossRef]
- Roberts, S.A.; Simpson, D.M.; Armstrong, S.D.; Davidson, A.J.; Robertson, D.H.; McLean, L.; Beynon, R.J.; Hurst, J.L. Darcin: A male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol. 2010, 8, 75. [Google Scholar] [CrossRef]
- Roberts, S.A.; Davidson, A.J.; McLean, L.; Beynon, R.J.; Hurst, J.L. Pheromonal induction of spatial learning in mice. Science 2012, 338, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Janotova, K.; Stopka, P. Mechanisms of chemical communication: The role of major urinary proteins. Folia Zool. 2009, 58, 41–55. [Google Scholar]
- Nelson, A.C.; Cunningham, C.B.; Ruff, J.S.; Potts, W.K. Protein pheromone expression levels predict and respond to the formation of social dominance networks. J. Evol. Biol. 2015, 28, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Flower, D.R. The lipocalin protein family: Structure and function. Biochem. J. 1996, 318, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Åkerstrom, B.; Flower, D.R.; Salier, J.-P. Lipocalins: Unity in diversity. Biochim. Biophys. Acta 2000, 1482, 1–8. [Google Scholar] [CrossRef]
- Flower, D.R.; North, A.C.; Sansom, C.E. The lipocalin protein family: Structural and sequence overview. Biochim. Biophys. Acta 2000, 1482, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Stopková, R.; Stopka, P.; Janotová, K.; Jedelský, P.L. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus). J. Chem. Ecol. 2007, 33, 861–869. [Google Scholar] [CrossRef]
- Cheetham, S.A.; Smith, A.L.; Armstrong, S.D.; Beynon, R.J.; Hurst, J.L. Limited variation in the Major Urinary Proteins of laboratory mice. Physiol. Behav. 2009, 96, 253–261. [Google Scholar] [CrossRef]
- Logan, D.W.; Marton, T.F.; Stowers, L. Species specificity in major urinary proteins by parallel evolution. PLoS ONE 2008, 9, e3280. [Google Scholar] [CrossRef] [PubMed]
- Mudge, J.M.; Armstrong, S.D.; McLaren, K.; Beynon, R.J.; Hurst, J.L.; Nicholson, C.; Robertson, D.H.; Wilming, L.G.; Harrow, J.L. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol. 2008, 9, R91. [Google Scholar] [CrossRef]
- Sheehan, M.J.; Campbell, P.; Miller, C.H. Evolutionary patterns of major urinary protein scent signals in house mice and relatives. Mol. Ecol. 2019, 28, 3587–3601. [Google Scholar] [CrossRef]
- Hurst, J.L. The functions of urine marking in a free-living population of house mice, Mus domesticus Rutty. Anim. Behav. 1987, 35, 1433–1442. [Google Scholar] [CrossRef]
- de Smith, A.J.; Walters, R.G.; Froguel, P.; Blakemore, A.I. Human genes involved in copy number variation: Mechanisms of origin, functional effects and implications for disease. Cytogenet. Genome Res. 2008, 123, 17–26. [Google Scholar] [CrossRef]
- Swanson-Wagner, R.A.; Eichten, S.R.; Kumari, S.; Tiffin, P.; Stein, J.C.; Ware, D.; Springer, N.M. Pervasive gene content variation and copy number variation in maise and its undomesticated progenitor. Genome Res. 2010, 20, 1689–1699. [Google Scholar] [CrossRef]
- Soh, Y.Q.; Alföldi, J.; Pyntikova, T.; Brown, L.G.; Graves, T.; Minx, P.J.; Fulton, R.S.; Kremitzki, C.; Koutseva, N.; Mueller, J.L. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014, 159, 800–813. [Google Scholar] [CrossRef]
- Lucotte, E.A.; Skov, L.; Jensen, J.M.; Macià, M.C.; Munch, K.; Schierup, M.H. Dynamic copy number evolution of X- and Y-linked ampliconic genes in human populations. Genetics 2018, 209, 907–920. [Google Scholar] [CrossRef]
- Sun, Y.; Joyce, P.A. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane. Plant Cell Rep. 2017, 36, 1775–1783. [Google Scholar] [CrossRef]
- Payne, C.E.; Malone, N.; Humphries, R.; Bradbrook, C.; Veggerby, C.; Beynon, R.J.; Hurst, J.L. Heterogeneity of major urinary proteins in house mice: Population and sex differences. In Chemical Signals in Vertebrates; Marchlewska-Koj, A., Lepri, J.J., Müller-Schwarze, D., Eds.; Springer: New York, NY, USA, 2001; Volume 9, pp. 233–240. [Google Scholar] [CrossRef]
- Beynon, R.J.; Veggerby, C.; Payne, C.E.; Robertson, D.H.L.; Gaskell, S.J.; Humphries, R.E.; Hurst, J.L. Polymorphism in major urinary proteins: Molecular heterogeneity in a wild mouse population. J. Chem. Ecol. 2002, 28, 1429–1446. [Google Scholar] [CrossRef]
- Sage, R.D. Wild mice. In The Mouse in Biomedical Research; Foster, H.L., Small, J.D., Fox, J.G., Eds.; Academic Press: New York, NY, USA, 1981; pp. 40–90. [Google Scholar]
- Singleton, G.; Krebs, C.J. The secret world of wild mice. History, wild mice, and genetics. In The Mouse in Biomedical Research; Fox, J.G., Davisson, M.T., Quimby, F.W., Barthold, S.W., Newcomer, C.E., Smith, A.L., Eds.; Elsevier: Oxford, UK, 2007; Volume 1, pp. 25–52. [Google Scholar]
- Berry, R.J. Town mouse, country mouse: Adaptation and adaptability in Mus domesticus (M. m. domesticus). Mamm. Rev. 1981, 11, 91–136. [Google Scholar] [CrossRef]
- Orsini, P.; Bonhomme, F.; Britton-Davidian, J.; Croset, H.; Gerasimov, S.; Thaler, L. Le complèxe d’espèces du genre Mus en Europe Centrale et Orientale. Z. Säugertierd 1983, 48, 86–95. [Google Scholar]
- Marshall, J.T. Systematics of the genus Mus. In The Wild Mice in Immunology; Potter, M., Nadeau, J.H., Cancro, M.P., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 1986; Volume 127, pp. 12–18. [Google Scholar]
- Mikula, O.; Macholán, M.; Ďureje, Ľ.; Hiadlovská, Z.; Daniszová, K.; Janotová, K.; Vošlajerová Bímová, B. House mouse subspecies do differ in their social structure. Ecol. Evol. 2022, 28, e9683. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-W.; Lee, P.-F.; Lu, K.-H.; Yu, H.-T. A population study of house mice (Mus musculus castaneus) inhabiting rice granaries in Taiwan. Zool. Stud. 1998, 37, 201–212. [Google Scholar]
- Yu, H.-T.; Peng, Y.-H. Population differentiation and gene flow revealed by microsatellite DNA markers in the house mouse (Mus musculus castaneus) in Taiwan. Zool. Sci. 2002, 19, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-Y.; Lin, Y.-T.; Yu, H.-T. Population ecology of the southeast Asian house mouse (Muridae: Mus musculus castaneus) inhabiting rice granaries in Taiwan. Zool. Stud. 2006, 45, 467–474. [Google Scholar]
- Marshall, J.T.; Sage, R.D. Taxonomy of the house mouse. Symp. Zool. Soc. Lond. 1981, 47, 15–25. [Google Scholar]
- Kuntová, B.; Stopková, R.; Stopka, P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 2018, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Stopka, P.; Kuntova, B.; Klempt, P.; Havrdova, L.; Cerna, M.; Stopkova, R. On the saliva proteome of the eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci. Rep. 2016, 6, 32481. [Google Scholar] [CrossRef]
- Stopkova, R.; Klempt, P.; Kuntova, B.; Stopka, P. On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling. PeerJ 2017, 5, e3541. [Google Scholar] [CrossRef]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalisation and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef]
- Stopková, R.; Vinkler, D.; Kuntová, B.; Šedo, O.; Albrecht, T.; Suchan, J.; Dvořáková-Hortová, K.; Zdráhal, Z.; Stopka, P. Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Front. Ecol. Evol. 2016, 4, 47. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Data Science Workbench, Version 14. 2020. Available online: http://tibco.com (accessed on 20 June 2023).
- Karn, R.C.; Chung, A.G.; Laukaitis, C.M. Did androgen-binding protein paralogs undergo neo- and/or subfunctionalization as the Abp gene region expanded in the mouse genome? PLoS ONE 2014, 22, e115454. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Searle, J.B.; White, P.C.L. Adaptations of animals to commensal habitats: Population dynamics of house mice Mus musculus domesticus on farms. J. Anim. Ecol. 2004, 73, 878–888. [Google Scholar] [CrossRef]
- Pollard, K.A.; Blumstein, D.T. Social group size predicts the evolution of individuality. Curr. Biol. 2011, 21, 413–417. [Google Scholar] [CrossRef]
- Balas, B.; Saville, A. N170 face specificity and face memory depend on hometown size. Neuropsychologia 2015, 69, 211–217. [Google Scholar] [CrossRef]
- Wilmer, J.B.; Germine, L.; Chabris, C.F.; Chatterjee, G.; Williams, M.; Loken, E.; Nakayama, K.; Duchaine, B. Human face recognition ability is specific and highly heritable. Proc. Natl. Acad. Sci. USA 2010, 107, 5238–5241. [Google Scholar] [CrossRef] [PubMed]
- Shakeshaft, N.G.; Plomin, R. Genetic specificity of face recognition. Proc. Natl. Acad. Sci. USA 2015, 112, 12887–12892. [Google Scholar] [CrossRef]
- Knopf, J.L.; Gallagher, J.F.; Held, W.A. Differential, multihormonal regulation of the mouse major urinary protein gene family in the liver. Mol. Cell. Biol. 1983, 3, 2232–2240. [Google Scholar] [CrossRef] [PubMed]
- Penn, D.J.; Zala, S.M.; Luzynski, K.C. Regulation of sexually dimorphic expression of Major Urinary Proteins. Front. Physiol. 2022, 13, 822073. [Google Scholar] [CrossRef]
- Thoß, M.; Luzynski, K.; Ante, M.; Miller, I.; Penn, D.J. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures. Front. Ecol. Evol. 2015, 3, 71. [Google Scholar] [CrossRef]
- Macholán, M.; Daniszová, K.; Hamplová, P.; Janotová, K.; Kašný, M.; Mikula, O.; Vošlajerová Bímová, B.; Hiadlovská, Z. Rank-dependency of Major urinary protein excretion in two house mouse subspecies. J. Vertebr. Biol. 2023, 2024, 23046. [Google Scholar] [CrossRef]
- Janotova, K.; Stopka, P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J. Chem. Ecol. 2011, 37, 647–656. [Google Scholar] [CrossRef]
- Stopka, P.; Janotova, K.; Heyrovsky, D. The advertisement role of major urinary proteins in mice. Physiol. Behav. 2007, 91, 667–670. [Google Scholar] [CrossRef]
- Hurst, J.L.; Payne, C.E.; Nevison, C.M.; Marie, A.D.; Humphries, R.E.; Robertson, D.H.L.; Cavaggioni, A.; Beynon, R.J. Individual recognition in mice mediated by major urinary proteins. Nature 2001, 414, 631–634. [Google Scholar] [CrossRef]
- Hurst, J.L.; Beynon, R.J. Rodent urinary proteins: Genetic identity signals and pheromones. In Chemical Signals in Vertebrates; East, M.L., Dehnhard, M., Eds.; Springer: New York, NY, USA, 2013; Volume 12, pp. 117–133. [Google Scholar]
- Cheetham, S.A.; Thom, M.D.; Jury, F.; Ollier, W.E.R.; Beynon, R.J.; Hurst, J.L. The genetic basis of individual-recognition signals in the mouse. Curr. Biol. 2007, 17, 1771–1777. [Google Scholar] [CrossRef]
- Sheehan, M.J.; Lee, V.; Corbet-Detig, R.; Bi, K.; Beynon, R.J.; Hurst, J.L.; Nachman, M.W. Selection on coding and regulatory variation maintains individuality in major urinary protein scent marks in wild mice. PLoS Genet. 2016, 12, e1005891. [Google Scholar] [CrossRef]
- Thoß, M.; Enk, V.; Yu, H.; Miller, I.; Luzynski, K.C.; Balint, B.; Smith, S.; Razzazi-Fazeli, E.; Penn, D.J. Diversity of major urinary proteins (MUPs) in wild house mice. Sci. Rep. 2016, 6, 38378. [Google Scholar] [CrossRef]
- Hurst, J.L.; Beynon, R.J.; Armstrong, S.D.; Davidson, A.J.; Roberts, S.A.; Gómez-Baena, G.; Smadja, C.M.; Ganem, G. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: Potential candidates involved in speciation. Sci. Rep. 2017, 7, 44992. [Google Scholar] [CrossRef]
- Johnston, R.E. Chemical communication in rodents: From pheromones to individual recognition. J. Mammal. 2003, 84, 1141–1162. [Google Scholar] [CrossRef]
- Thom, M.D.; Hurst, J.L. Individual recognition by scent. Ann. Zool. Fenn. 2004, 41, 765–787. [Google Scholar]
- Karn, R.C. Evolution of rodent pheromones: A review of the ABPs with comparison to the ESPs and the MUPs. Intern. J. Biochem. Res. Rev. 2013, 3, 328–363. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.E.; Robertson, D.H.L.; Beynon, R.J.; Hurst, J.L. Unravelling the chemical basis of competitive scent marking in house mice. Anim. Behav. 1999, 58, 1177–1190. [Google Scholar] [CrossRef] [PubMed]
M. musculus | ||||||||
---|---|---|---|---|---|---|---|---|
musculus | domesticus | castaneus | ||||||
Strain | Country | N | Strain | Country | N | Strain | Country | N |
BUSNA | Czechia | 3/6 | DDO | Denmark | 3/6 | CIM | India | 3/6 |
MBK | Bulgaria | 3/6 | DROS | Bulgaria | 3/6 | CKN | Kenya | 3/6 |
MDH | Denmark | 3/6 | SCHUNT | Germany | 3/6 | |||
MPB | Poland | 3/6 | STRA | Germany | 3/6 | |||
STUF | Czechia | 3/6 | WLA | France | 3/6 | |||
M. spretus | M. spicilegus | M. macedonicus | ||||||
Strain | Country | N | Strain | Country | N | Strain | Country | N |
SEB | Spain | 3/6 | ZRU | Ukraine | 3/6 | XBS | Bulgaria | 3/6 |
SMON | France | 3/6 | ZPB | Bulgaria | 2/2 | MACSO | Bulgaria | 2/2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macholán, M.; Daniszová, K.; Hiadlovská, Z. The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans. Genes 2023, 14, 2090. https://doi.org/10.3390/genes14112090
Macholán M, Daniszová K, Hiadlovská Z. The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans. Genes. 2023; 14(11):2090. https://doi.org/10.3390/genes14112090
Chicago/Turabian StyleMacholán, Miloš, Kristina Daniszová, and Zuzana Hiadlovská. 2023. "The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans" Genes 14, no. 11: 2090. https://doi.org/10.3390/genes14112090
APA StyleMacholán, M., Daniszová, K., & Hiadlovská, Z. (2023). The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans. Genes, 14(11), 2090. https://doi.org/10.3390/genes14112090