Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Most Significant Implicated Genes in OSCC
2.2. Selection of Most Significant miRNAs in OSCC
2.3. Analysis of Target Gene/miRNA Interaction
2.4. Important Driver Genes in OSCC
2.5. Tumor Suppressor Genes
2.6. Oncogenes
2.7. Combinatory Significance of Key Driver Genes in OSCC
3. Results of Bioinformatic Analysis of miRNA/Target Interactions
3.1. MiR-155-5p in OSCC
3.1.1. Expression Patterns in OSCC
3.1.2. Known Target Genes and Affected Pathways
3.2. MiR-16-5p in OSCC
3.2.1. Expression Patterns in OSCC
3.2.2. Known Target Genes and Affected Pathways
3.3. MiR-1-3p in OSCC
3.3.1. Expression Patterns in OSCC
3.3.2. Known Target Genes and Affected Pathways
3.4. MiR-124-3p in OSCC
3.4.1. Expression Patterns in OSCC
3.4.2. Known Target Genes and Affected Pathways
3.5. MiR-34a-5p in OSCC
3.5.1. Expression Patterns in OSCC
3.5.2. Known Target Genes and Affected Pathways
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pare, A.; Joly, A. Oral cancer: Risk factors and management. Presse Medicale 2017, 46, 320–330. [Google Scholar]
- Ali, K. Oral cancer—The fight must go on against all odds. Evid.-Based Dent. 2022, 23, 4–5. [Google Scholar]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Bugshan, A.; Farooq, I. Oral squamous cell carcinoma: Metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Research 2020, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Abati, S.; Bramati, C.; Bondi, S.; Lissoni, A.; Trimarchi, M. Oral Cancer and Precancer: A Narrative Review on the Relevance of Early Diagnosis. Int. J. Environ. Res. Public Health 2020, 17, 9160. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, C.; Wang, S.; Wang, Z.; Jiang, J.; Wang, W.; Li, X.; Chen, J.; Liu, K.; Li, C.; et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res. 2016, 76, 1770–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharat, S.A.; Momin, M.; Bhavsar, C. Oral Squamous Cell Carcinoma: Current Treatment Strategies and Nanotechnology-Based Approaches for Prevention and Therapy. Crit. Rev. Ther. Drug Carr. Syst. 2016, 33, 363–400. [Google Scholar] [CrossRef]
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar]
- Ghantous, Y.; Bahouth, Z.; Abu El-Naaj, I. Clinical and genetic signatures of local recurrence in oral squamous cell carcinoma. Arch. Oral Biol. 2018, 95, 141–148. [Google Scholar] [CrossRef]
- Weckx, A.; Riekert, M.; Grandoch, A.; Schick, V.; Zoller, J.E.; Kreppel, M. Time to recurrence and patient survival in recurrent oral squamous cell carcinoma. Oral Oncol. 2019, 94, 8–13. [Google Scholar] [CrossRef]
- Fantozzi, P.J.; Bavarian, R.; Tamayo, I.; Bind, M.A.; Woo, S.B.; Villa, A. The role of family history of Cancer in Oral Cavity Cancer. Head Face Med. 2021, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Vatsa, P.P.; Jindal, Y.; Bhadwalkar, J.; Chamoli, A.; Upadhyay, V.; Mandoli, A. Role of epigenetics in OSCC: An understanding above genetics. Med. Oncol. 2023, 40, 122. [Google Scholar] [CrossRef] [PubMed]
- Sasahira, T.; Kirita, T. Hallmarks of Cancer-Related Newly Prognostic Factors of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2018, 19, 2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, A.; Rao, K.N.; Arora, R.D.; Nagarkar, N.M.; Singh, A.; Shetty, O.S. Molecular Insights into Oral Malignancy. Indian J. Surg. Oncol. 2022, 13, 267–280. [Google Scholar] [CrossRef]
- Yapijakis, C. Regulatory Role of MicroRNAs in Brain Development and Function. Adv. Exp. Med. Biol. 2020, 1195, 237–247. [Google Scholar]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol. 2014, 9, 287–314. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.D.; Pattatheyil, A.; Roychoudhury, S. Functional Landscape of Dysregulated MicroRNAs in Oral Squamous Cell Carcinoma: Clinical Implications. Front. Oncol. 2020, 10, 619. [Google Scholar] [CrossRef]
- Palaia, G.; Pippi, R.; Rocchetti, F.; Caputo, M.; Macali, F.; Mohsen, A.; Del Vecchio, A.; Tenore, G.; Romeo, U. Liquid biopsy in the assessment of microRNAs in oral squamous cell carcinoma: A systematic review. J. Clin. Exp. Dent. 2022, 14, e875–e884. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.W.; Park, Y.S. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life 2020, 10, 228. [Google Scholar] [CrossRef]
- Shanmugam, A.; Hariharan, A.K.; Hasina, R.; Nair, J.R.; Katragadda, S.; Irusappan, S.; Ravichandran, A.; Veeramachaneni, V.; Bettadapura, R.; Bhati, M.; et al. Ultrasensitive detection of tumor-specific mutations in saliva of patients with oral cavity squamous cell carcinoma. Cancer 2021, 127, 1576–1589. [Google Scholar] [CrossRef]
- Starzynska, A.; Adamska, P.; Sejda, A.; Sakowicz-Burkiewicz, M.; Adamski, L.J.; Marvaso, G.; Wychowanski, P.; Jereczek-Fossa, B.A. Any Role of PIK3CA and PTEN Biomarkers in the Prognosis in Oral Squamous Cell Carcinoma? Life 2020, 10, 325. [Google Scholar] [PubMed]
- Vairaktaris, E.; Loukeri, S.; Vassiliou, S.; Nkenke, E.; Spyridonidou, S.; Vylliotis, A.; Papakosta, V.; Lazaris, A.; Agrogiannis, G.; Yapijakis, C.; et al. EGFR and c-Jun exhibit the same pattern of expression and increase gradually during the progress of oral oncogenesis. In Vivo 2007, 21, 791–796. [Google Scholar] [PubMed]
- Yapijakis, C.; Kalogera, S.; Papakosta, V.; Vassiliou, S. The Hamster Model of Sequential Oral Carcinogenesis: An Update. In Vivo 2019, 33, 1751–1755. [Google Scholar] [PubMed] [Green Version]
- D’Souza, W.; Kumar, A. microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol. 2020, 111, 104916. [Google Scholar]
- Rishabh, K.; Khadilkar, S.; Kumar, A.; Kalra, I.; Kumar, A.P.; Kunnumakkara, A.B. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review. Int. J. Mol. Sci. 2021, 22, 2561. [Google Scholar]
- Aali, M.; Mesgarzadeh, A.H.; Najjary, S.; Abdolahi, H.M.; Kojabad, A.B.; Baradaran, B. Evaluating the role of microRNAs alterations in oral squamous cell carcinoma. Gene 2020, 757, 144936. [Google Scholar] [CrossRef]
- Manzano-Moreno, F.J.; Costela-Ruiz, V.J.; Garcia-Recio, E.; Olmedo-Gaya, M.V.; Ruiz, C.; Reyes-Botella, C. Role of Salivary MicroRNA and Cytokines in the Diagnosis and Prognosis of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 12215. [Google Scholar] [CrossRef]
- Menini, M.; De Giovanni, E.; Bagnasco, F.; Delucchi, F.; Pera, F.; Baldi, D.; Pesce, P. Salivary Micro-RNA and Oral Squamous Cell Carcinoma: A Systematic Review. J. Pers. Med. 2021, 11, 101. [Google Scholar]
- Shiah, S.G.; Chou, S.T.; Chang, J.Y. MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma. Cancers 2021, 13, 5604. [Google Scholar]
- Erfanparast, L.; Taghizadieh, M.; Shekarchi, A.A. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front. Oncol. 2022, 12, 914593. [Google Scholar]
- Al Rawi, N.; Elmabrouk, N.; Abu Kou, R.; Mkadmi, S.; Rizvi, Z.; Hamdoon, Z. The role of differentially expressed salivary microRNA in oral squamous cell carcinoma. A systematic review. Arch. Oral Biol. 2021, 125, 105108. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, K.B.; Shah, V.; Chauhan, N.; Shah, N.; Parmar, G. Expression of microRNA-21 in saliva and tumor tissue of patients with oral squamous cell carcinoma: A predictor of cervical lymph node metastasis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 133, 60–69. [Google Scholar] [PubMed]
- Vairaktaris, E.; Spyridonidou, S.; Papakosta, V.; Vylliotis, A.; Lazaris, A.; Perrea, D.; Yapijakis, C.; Patsouris, E. The hamster model of sequential oral oncogenesis. Oral Oncol. 2008, 44, 315–324. [Google Scholar]
- D’Cruz, A.; Dechamma, P.N.; Saldanha, M.; Maben, S.; Shetty, P.; Chakraborty, A. Non-Invasive Saliva-based Detection of Gene Mutations in Oral Cancer Patients by Oral Rub and Rinse Technique. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 3287–3291. [Google Scholar] [PubMed]
- Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer 2009, 9, 749–758. [Google Scholar]
- Lindemann, A.; Takahashi, H.; Patel, A.A.; Osman, A.A.; Myers, J.N. Targeting the DNA Damage Response in OSCC with TP53 Mutations. J. Dent. Res. 2018, 97, 635–644. [Google Scholar] [CrossRef]
- Hyodo, T.; Kuribayashi, N.; Fukumoto, C.; Komiyama, Y.; Shiraishi, R.; Kamimura, R.; Sawatani, Y.; Yaguchi, E.; Hasegawa, T.; Izumi, S.; et al. The mutational spectrum in whole exon of p53 in oral squamous cell carcinoma and its clinical implications. Sci. Rep. 2022, 12, 21695. [Google Scholar] [CrossRef]
- Szturz, P.; Wouters, K.; Kiyota, N.; Tahara, M.; Prabhash, K.; Noronha, V.; Adelstein, D.; Vermorken, J.B. Altered fractionation radiotherapy combined with concurrent low-dose or high-dose cisplatin in head and neck cancer: A systematic review of literature and meta-analysis. Oral Oncol. 2018, 76, 52–60. [Google Scholar]
- Zhang, X.; Zhang, L.; Tan, X.; Lin, Y.; Han, X.; Wang, H.; Ming, H.; Li, Q.; Liu, K.; Feng, G. Systematic analysis of genes involved in oral cancer metastasis to lymph nodes. Cell. Mol. Biol. Lett. 2018, 23, 53. [Google Scholar] [CrossRef]
- Shima, K.; Nosho, K.; Baba, Y.; Cantor, M.; Meyerhardt, J.A.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review. Int. J. Cancer 2011, 128, 1080–1094. [Google Scholar]
- Padhi, S.S.; Roy, S.; Kar, M.; Saha, A.; Roy, S.; Adhya, A.; Baisakh, M.; Banerjee, B. Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncol. 2017, 73, 27–35. [Google Scholar] [CrossRef]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Zhai, Y.; Shi, R.; Qian, Y.; Cui, H.; Yang, J.; Bi, Y.; Yan, T.; Yang, J.; Ma, Y.; et al. FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol. Rep. 2018, 39, 2136–2146. [Google Scholar]
- Tang, Y.I.; Liu, Y.; Zhao, W.; Yu, T.; Yu, H. Caspase-8 polymorphisms and risk of oral squamous cell carcinoma. Exp. Ther. Med. 2015, 10, 2267–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, T.F.; Benaich, N.; Goldie, S.J.; Sipila, K.; Ames-Draycott, A.; Cai, W.; Yin, G.; Watt, F.M. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation. Cancer Lett. 2016, 383, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Y.; Negrao, M.V.; Akagi, K.; Xiao, W.; Jiang, B.; Warner, S.C.; Dunn, J.D.; Wang, J.; Symer, D.E.; Gillison, M.L. Noninvasive genomic profiling of somatic mutations in oral cavity cancers. Oral Oncol. 2023, 140, 106372. [Google Scholar] [CrossRef]
- Kurasawa, Y.; Shiiba, M.; Nakamura, M.; Fushimi, K.; Ishigami, T.; Bukawa, H.; Yokoe, H.; Uzawa, K.; Tanzawa, H. PTEN expression and methylation status in oral squamous cell carcinoma. Oncol. Rep. 2008, 19, 1429–1434. [Google Scholar]
- Purow, B. Notch inhibition as a promising new approach to cancer therapy. Adv. Exp. Med. Biol. 2012, 727, 305–319. [Google Scholar]
- Fukusumi, T.; Califano, J.A. The NOTCH Pathway in Head and Neck Squamous Cell Carcinoma. J. Dent. Res. 2018, 97, 645–653. [Google Scholar]
- Pickering, C.R.; Zhang, J.; Yoo, S.Y.; Bengtsson, L.; Moorthy, S.; Neskey, D.M.; Zhao, M.; Ortega Alves, M.V.; Chang, K.; Drummond, J.; et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013, 3, 770–781. [Google Scholar] [CrossRef] [Green Version]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshahrani, S.A.; Al-Qahtani, W.S.; Almufareh, N.A.; Domiaty, D.M.; Albasher, G.I.; Safhi, F.A.; AlQassim, F.A.; Alotaibi, M.A.; Al-Hazani, T.M.; Almutlaq, B.A. Oral cancer among Khat users: Finding evidence from DNA analysis of nine cancer-related gene mutations. BMC Oral Health 2021, 21, 626. [Google Scholar] [CrossRef]
- Simpson, D.R.; Mell, L.K.; Cohen, E.E. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2015, 51, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Cohen, Y.; Goldenberg-Cohen, N.; Shalmon, B.; Shani, T.; Oren, S.; Amariglio, N.; Dratviman-Storobinsky, O.; Shnaiderman-Shapiro, A.; Yahalom, R.; Kaplan, I.; et al. Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma. Oral Oncol. 2011, 47, 946–950. [Google Scholar] [CrossRef]
- Brand, T.M.; Iida, M.; Wheeler, D.L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol. Ther. 2011, 11, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar]
- Popovic, B.; Jekic, B.; Novakovic, I.; Lukovic, L.; Konstantinovic, V.; Babic, M.; Milasin, J. Cancer genes alterations and HPV infection in oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2010, 39, 909–915. [Google Scholar] [CrossRef]
- Jelovac, D.B.; Tepavcevic, Z.; Nikolic, N.; Ilic, B.; Eljabo, N.; Popovic, B.; Carkic, J.; Konstantinovic, V.; Vukadinovic, M.; Milicic, B.; et al. The amplification of c-erb-B2 in cancer-free surgical margins is a predictor of poor outcome in oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2016, 45, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells 2019, 8, 614. [Google Scholar]
- Xie, X.; Wang, Z.; Chen, F.; Yuan, Y.; Wang, J.; Liu, R.; Chen, Q. Roles of FGFR in oral carcinogenesis. Cell Prolif. 2016, 49, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Lopes, V.K.M.; Jesus, A.S.; Souza, L.L.; Miyahara, L.A.N.; Guimaraes, D.M.; Pontes, H.A.R.; Pontes, F.S.C.; Carvalho, P.L. Ki-67 protein predicts survival in oral squamous carcinoma cells: An immunohistochemical study. Braz. Oral Res. 2017, 31, e66. [Google Scholar] [PubMed] [Green Version]
- Nayak, S.; Goel, M.M.; Makker, A.; Bhatia, V.; Chandra, S.; Kumar, S.; Agarwal, S.P. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma. PLoS ONE 2015, 10, e0138801. [Google Scholar] [CrossRef] [Green Version]
- Raimondi, A.R.; Molinolo, A.A.; Itoiz, M.E. Fibroblast growth factor-2 expression during experimental oral carcinogenesis. Its possible role in the induction of pre-malignant fibrosis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2006, 35, 212–217. [Google Scholar]
- Gluck, C.; Glathar, A.; Tsompana, M.; Nowak, N.; Garrett-Sinha, L.A.; Buck, M.J.; Sinha, S. Molecular dissection of the oncogenic role of ETS1 in the mesenchymal subtypes of head and neck squamous cell carcinoma. PLoS Genet. 2019, 15, e1008250. [Google Scholar] [CrossRef] [Green Version]
- Pande, P.; Soni, S.; Chakravarti, N.; Mathur, M.; Shukla, N.K.; Ralhan, R. Prognostic impact of Ets-1 overexpression in betel and tobacco related oral cancer. Cancer Detect. Prev. 2001, 25, 496–501. [Google Scholar]
- Sheng, X.; Li, X.; Qian, Y.; Wang, S.; Xiao, C. ETS1 regulates NDRG1 to promote the proliferation, migration, and invasion of OSCC. Oral Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, S. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature. Indian J. Dent. 2015, 6, 91–98. [Google Scholar] [PubMed]
- Xu, H.; Jin, X.; Yuan, Y.; Deng, P.; Jiang, L.; Zeng, X.; Li, X.S.; Wang, Z.Y.; Chen, Q.M. Prognostic value from integrative analysis of transcription factors c-Jun and Fra-1 in oral squamous cell carcinoma: A multicenter cohort study. Sci. Rep. 2017, 7, 7522. [Google Scholar]
- Perez-Sayans, M.; Suarez-Penaranda, J.M.; Pilar, G.D.; Barros-Angueira, F.; Gandara-Rey, J.M.; Garcia-Garcia, A. What real influence does the proto-oncogene c-myc have in OSCC behavior? Oral Oncol. 2011, 47, 688–692. [Google Scholar]
- Hu, L.; Liu, J.; Li, Z.; Wang, C.; Nawshad, A. Transforming growth factor-beta1 activates DeltaNp63/c-Myc to promote oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 460–482.e4. [Google Scholar] [CrossRef] [Green Version]
- Pallavi, N.; Nalabolu, G.R.K.; Hiremath, S.K.S. Bcl-2 and c-Myc expression in oral dysplasia and oral squamous cell carcinoma: An immunohistochemical study to assess tumor progression. J. Oral Maxillofac. Pathol. JOMFP 2018, 22, 325–331. [Google Scholar] [PubMed]
- Liu, Z.M.; Bao, Y.; Li, T.K.; Di, Y.B.; Song, W.J. MKI67 an potential oncogene of oral squamous cell carcinoma via the high throughput technology. Medicine 2022, 101, e32595. [Google Scholar] [PubMed]
- Dragomir, L.P.; Simionescu, C.; Margaritescu, C.; Stepan, A.; Dragomir, I.M.; Popescu, M.R. P53, p16 and Ki67 immunoexpression in oral squamous carcinomas. Rom. J. Morphol. Embryol. 2012, 53, 89–93. [Google Scholar] [PubMed]
- Sudha, V.M.; Hemavathy, S. Role of bcl-2 oncoprotein in oral potentially malignant disorders and squamous cell carcinoma: An immunohistochemical study. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2011, 22, 520–525. [Google Scholar]
- Arya, V.; Singh, S.; Daniel, M.J. Clinicopathological correlation of Bcl-2 oncoprotein expression in oral precancer and cancer. J. Oral Biol. Craniofacial Res. 2016, 6, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, A.; Alzohairy, M.; Babiker, A.Y.; Rizvi, M.A.; Elkarimahmad, H.G. Clinicopathological significance of PTEN and bcl2 expressions in oral squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2012, 5, 965–971. [Google Scholar]
- Dwivedi, R.; Chandra, S.; Mehrotra, D.; Raj, V.; Pandey, R. Predicting transition from oral pre-malignancy to malignancy via Bcl-2 immuno-expression: Evidence and lacunae. J. Oral Biol. Craniofacial Res. 2020, 10, 397–403. [Google Scholar]
- Mehterov, N.; Sacconi, A.; Pulito, C.; Vladimirov, B.; Haralanov, G.; Pazardjikliev, D.; Nonchev, B.; Berindan-Neagoe, I.; Blandino, G.; Sarafian, V. A novel panel of clinically relevant miRNAs signature accurately differentiates oral cancer from normal mucosa. Front. Oncol. 2022, 12, 1072579. [Google Scholar]
- Wu, M.; Duan, Q.; Liu, X.; Zhang, P.; Fu, Y.; Zhang, Z.; Liu, L.; Cheng, J.; Jiang, H. MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed. Pharmacother. 2020, 122, 109696. [Google Scholar]
- Baba, O.; Hasegawa, S.; Nagai, H.; Uchida, F.; Yamatoji, M.; Kanno, N.I.; Yamagata, K.; Sakai, S.; Yanagawa, T.; Bukawa, H. MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2016, 45, 248–255. [Google Scholar]
- Liu, B.; Hu, J.; Zhao, H.; Zhao, L.; Pan, S. MicroRNA-155-5p Contributes to 5-Fluorouracil Resistance Through Down-Regulating TP53INP1 in Oral Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 706095. [Google Scholar] [CrossRef]
- Hu, S.; Wang, H.; Yan, D.; Lu, W.; Gao, P.; Lou, W.; Kong, X. Loss of miR-16 contributes to tumor progression by activation of tousled-like kinase 1 in oral squamous cell carcinoma. Cell Cycle 2018, 17, 2284–2295. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, G.H. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J. Cell. Physiol. 2018, 233, 9447–9457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manikandan, M.; Deva Magendhra Rao, A.K.; Arunkumar, G.; Manickavasagam, M.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol. Cancer 2016, 15, 28. [Google Scholar] [PubMed] [Green Version]
- Troiano, G.; Mastrangelo, F.; Caponio, V.C.A.; Laino, L.; Cirillo, N.; Lo Muzio, L. Predictive Prognostic Value of Tissue-Based MicroRNA Expression in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. J. Dent. Res. 2018, 97, 759–766. [Google Scholar] [PubMed]
- Maclellan, S.A.; Lawson, J.; Baik, J.; Guillaud, M.; Poh, C.F.; Garnis, C. Differential expression of miRNAs in the serum of patients with high-risk oral lesions. Cancer Med. 2012, 1, 268–274. [Google Scholar] [PubMed]
- Khalil, M.I.; Madere, C.; Ghosh, I.; Adam, R.M.; De Benedetti, A. Interaction of TLK1 and AKTIP as a Potential Regulator of AKT Activation in Castration-Resistant Prostate Cancer Progression. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2021, 28, 339–354. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, H.; Zhao, J.; Wen, H. MiRNA-16 inhibited oral squamous carcinoma tumor growth in vitro and in vivo via suppressing Wnt/β-catenin signaling pathway. OncoTargets Ther. 2018, 11, 5111–5119. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.Y.; Liao, Y.W.; Lu, M.Y.; Yu, C.H.; Yu, C.C.; Chou, M.Y. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas. J. Formos. Med. Assoc. 2017, 116, 782–789. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Chen, Z.; Wang, K.; Shi, L. MicroRNA-1-3p inhibits the proliferation and migration of oral squamous cell carcinoma cells by targeting DKK1. Biochem. Cell Biol. 2018, 96, 355–364. [Google Scholar]
- Koshizuka, K.; Hanazawa, T.; Fukumoto, I.; Kikkawa, N.; Matsushita, R.; Mataki, H.; Mizuno, K.; Okamoto, Y.; Seki, N. Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. J. Hum. Genet. 2017, 62, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011, 3, S7–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, S.; Jones, A.V.; Hinsley, E.E.; Whawell, S.A.; Lambert, D.W. MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Lett. 2011, 585, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Ruales, C.; Arguello, J.V.; Lopez-Cortes, A.; Cabrera-Andrade, A.; Garcia-Cardenas, J.M.; Guevara-Ramirez, P.; Peralta, P.; Leone, P.E.; Paz, Y.M.C. Salivary MicroRNAs for Early Detection of Head and Neck Squamous Cell Carcinoma: A Case-Control Study in the High Altitude Mestizo Ecuadorian Population. BioMed Res. Int. 2018, 2018, 9792730. [Google Scholar]
- Li, X.; Fan, Q.; Li, J.; Song, J.; Gu, Y. MiR-124 down-regulation is critical for cancer associated fibroblasts-enhanced tumor growth of oral carcinoma. Exp. Cell Res. 2017, 351, 100–108. [Google Scholar] [CrossRef]
- Qiao, C.Y.; Qiao, T.Y.; Jin, H.; Liu, L.L.; Zheng, M.D.; Wang, Z.L. LncRNA KCNQ1OT1 contributes to the cisplatin resistance of tongue cancer through the KCNQ1OT1/miR-124-3p/TRIM14 axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 200–212. [Google Scholar]
- Xu, M.; Wang, Y.; Xia, R.; Wei, Y.; Wei, X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif. 2021, 54, e13115. [Google Scholar] [CrossRef]
- Shen, W.; Jin, Z.; Tong, X.; Wang, H.; Zhuang, L.; Lu, X.; Wu, S. TRIM14 promotes cell proliferation and inhibits apoptosis by suppressing PTEN in colorectal cancer. Cancer Manag. Res. 2019, 11, 5725–5735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.F.; Wei, S.B.; Mitchelson, K.; Gao, Y.; Zheng, Y.F.; Meng, Z.; Gan, Y.H.; Yu, G.Y. miR-34a inhibits migration and invasion of tongue squamous cell carcinoma via targeting MMP9 and MMP14. PLoS ONE 2014, 9, e108435. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Li, D.; Wang, S.; Sun, J. MiR-34a inhibits oral cancer progression partially by repression of interleukin-6-receptor. Int. J. Clin. Exp. Pathol. 2015, 8, 1364–1373. [Google Scholar]
- Li, Y.Y.; Tao, Y.W.; Gao, S.; Li, P.; Zheng, J.M.; Zhang, S.E.; Liang, J.; Zhang, Y. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine 2018, 36, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowski, I.; Zhu, X.; Saccon, T.D.; Ashiqueali, S.; Schneider, A.; de Carvalho Nunes, A.D.; Noureddine, S.; Sobecka, A.; Barczak, W.; Szewczyk, M.; et al. miRNAs as Biomarkers for Diagnosing and Predicting Survival of Head and Neck Squamous Cell Carcinoma Patients. Cancers 2021, 13, 3980. [Google Scholar] [CrossRef] [PubMed]
- Rokavec, M.; Oner, M.G.; Li, H.; Jackstadt, R.; Jiang, L.; Lodygin, D.; Kaller, M.; Horst, D.; Ziegler, P.K.; Schwitalla, S.; et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Investig. 2014, 124, 1853–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobin, E.; Bagwell, K.; Wagner, J.; Mysona, D.; Sandirasegarane, S.; Smith, N.; Bai, S.; Sharma, A.; Schleifer, R.; She, J.X. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 2019, 19, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019, 18, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.; Gao, J.; Sun, Q.W.; Wang, C.X.; Deng, W.; Mao, G.Y.; Li, H.Q.; Guo, S.S.; Cheng, J.; Wu, Y.N.; et al. MiR-34a inhibits the proliferation, migration, and invasion of oral squamous cell carcinoma by directly targeting SATB2. J. Cell. Physiol. 2020, 235, 4856–4864. [Google Scholar] [CrossRef]
- Roy, S.K.; Shrivastava, A.; Srivastav, S.; Shankar, S.; Srivastava, R.K. SATB2 is a novel biomarker and therapeutic target for cancer. J. Cell. Mol. Med. 2020, 24, 11064–11069. [Google Scholar] [CrossRef]
↑ miRNA | Sample Source | ↑ miRNA | Sample Source |
---|---|---|---|
let-7a-3p | Tissue [17] | miR-222 | Tissue, Cell lines [17,19,24] |
let-7i | Tissue [17] | miR-223 | Tissue, Plasma, Serum [17,18,25] |
miR-106b | Cell lines [17] | miR-24-3p | Tissue, Saliva, Plasma, Serum [14,17,18,26,27,28] |
miR-10a | Tissue, Cell lines [25,29] | miR-25 | Serum [17] |
miR-10b | Tissue, Cell lines, Plasma [14,25] | miR-26a | Tissue, Cell lines [19,25] |
miR-117 | Tissue, Cell lines [19] | ||
miR-118 | Tissue, Cell lines [19] | ||
miR-1246 | Tissue, Cell lines, Salivary exosomes [17,25,28] | miR-27a-3p | Tissue, Cell lines [18,24,25,30] |
miR-1250 | Saliva [18] | miR-27b | Tisuue, Cell lines, Saliva [28] |
miR-1269a | Tissue, Cell lines [19] | miR-29b | Tissue, Cell lines [17] |
miR-127 | Tissue [17] | miR-31-5p | Tissue, Cell lines, Saliva, Plasma [14,18,24,25,26,27,28,29,31] |
miR-1275 | Tissue [17] | miR-3162 | Whole blood [18] |
miR-128a | Cell lines [17] | miR-323-5p | Saliva [18] |
miR-130b | Tissue, Cell lines [19] | miR-34a | Salivary exosomes [27] |
miR-134 | Tissue, Plasma [17,24,25] | miR-34b | Tissue, Cell lines [19] |
miR-135 | Tissue, Cell lines [19] | miR-34c | Tissue, Cell lines [19] |
miR-135b-5p | Tissue [17] | miR-3651 | Tissue, Whole blood [18,25] |
miR-136 | Saliva [18] | miR-372 | Tissue, Cell lines [24,25] |
miR-142 | Tissue [17,19] | miR-373 | Tissue, Cell lines [24,25] |
miR-143 | Tissue, Cell lines [19] | miR-412-3p | Saliva [27] |
miR-143 | Tissue, Cell lines [29] | miR-412-3p | Saliva [18] |
miR-144 | Tissue [17] | miR-423 | Tissue, Cell lines [19] |
miR-145 | Saliva [27] | miR-423-3p | Tissue, Plasma [18,19] |
miR-146a-5p | Tissue, Saliva, Plasma [17,24,26,28,30] | miR-424-5p | Tissue, Cell lines [25] |
miR-146b | Tissue [17] | miR-4484 | Salivary exosomes [27] |
miR-147 | Saliva [18] | miR-450a | Tissue, Cell lines [25] |
miR-148a | Tissue, Saliva [18,19] | miR-451 | Tumor, Saliva, Serum [17] |
miR-148b | Cell lines [17] | MiR-4513 | Cell lines [25,30] |
miR-150-5p | Tissue, Plasma [18,19] | miR-455-5p | Tissue [17,25] |
miR-155-5p | Tissue, Cell lines [18,24,26,30] | miR-483 | Saliva [18] |
miR-15b | Tissue, Cell lines [17] | miR-483-5p | Serum [18] |
miR-181 | Tissue, Plasma [14,18] | miR-483-5p | Plasma, Serum [17] |
miR-181a | Plasma [18] | miR-494 | Tissue, Saliva, Whole blood [18,25] |
miR-181b | Plasma [18] | miR-497 | Tissue [17] |
miR-182-5p | Tissue [26] | miR-503 | Saliva [18] |
MiR-183 | Cell lines [30] | miR-5100 | Tissue, Serum [18,25] |
miR-184 | Saliva, Plasma [14,18,27] | miR-512-3p | Saliva [18] |
miR-187 | Plasma [18] | miR-542 | Tissue, Cell lines [19] |
miR-18a-5p | Tissue, Cell lines [25] | miR-543 | Tissue, Cell lines [25] |
miR-191 | Whole blood [18] | miR-582-5p | Cell lines [17] |
miR-196a-3p | Plasma [32] | MiR-626 | Tissue, Cell lines, Serum [18,30] |
miR-196a-5p | Saliva, Plasma [18,24,26,31] | miR-632 | Saliva [18] |
MiR-196b | Tissue, Cell lines, Saliva [24,31] | miR-646 | Saliva [18] |
miR-196b | Plasma [18] | miR-650 | Tissue, Cell lines [25] |
miR-200b-3p | Plasma [18] | miR-654 | Tissue, Cell lines [25] |
miR-21-3p | Tissue [17,25] | miR-668 | Saliva [18] |
miR-21-5p | Tissue, Cell lines, Saliva, Whole blood Plasma, Serum [17,18,19,25,26,27,28,30,31,32] | MiR-7975 | Salivary exosomes [28] |
miR-210 | Whole blood [18] | miR-877 | Saliva [18] |
MiR-211 | Tissue [14,24,26] | miR-877-5p | Saliva [17] |
miR-214 | Tissue, Cell lines [17] | miR-92b | Serum [18] |
miR-218 | Tissue [24,25] | miR-93 | Saliva [27] |
miR-220a | Saliva [18] | MiR-96-5p | Tissue [26] |
miR-221 | Tissue, Cell lines [17,19] |
↓ miRNA | Sample Source | ↓ miRNA | Sample Source |
---|---|---|---|
let-7a-5p | Tissue, Cell lines, Saliva [17,24,31] | miR-23b-3p | Tissue [17,25,26] |
miR-107 | Tissue, Cell lines, Saliva [17,27] | miR-26a | Tissue, Cell lines, Saliva [17,24,27] |
let-7c | Tissue, Saliva [24,28] | miR-26b | Cell lines [17] |
let-7c-5p | Tissue [17] | miR-27a-3p | Tissue, Cell lines [17] |
let-7d | Tissue, Cell lines, Saliva, Whole blood, Serum [17,18,24,26] | miR-27b | Tissue, Saliva, Plasma [17,26,27,31] |
let-7e | Tissue, Cell lines [24] | miR-299 | Tissue, Cell lines [25] |
let-7f | Tissue, Cell lines [17,24] | miR-29a-3p | Tissue, Serum [17,18,26,30] |
miR-1-3p | Tissue, Cell lines [17,25,26,30] | miR-29b-3p | Tissue, Cell lines [17,30] |
miR-100 | Tissue, Saliva [17,28] | miR-29c | Tissue, Cell lines [17] |
miR-101 | Tissue, Cell lines [25,30] | miR-30a-5p | Plasma [18] |
miR-106a | Tissue, Cell lines [25] | miR-320 | Tissue, Cell lines [25] |
miR-107 | Tissue, Cell lines [25] | miR-320a | Saliva [18] |
miR-10a | Tissue, Cell lines [17] | miR-338-3p | Serum [18] |
miR-124-3p | Tissue, Cell lines, Saliva [17,25,31] | miR-340 | Tissue [29] |
miR-1250 | Saliva [17] | miR-34a-5p | Tissue, Saliva [25,27,32] |
miR-125a-5p | Tissue, Saliva [14,18,28,31] | miR-375 | Tissue, Cell lines, Saliva [19,24,25,26,27,28,30,31] |
miR-125b-2-3p | Tissue, Cell lines [17] | miR-376c-3p | Tissue, Cell lines [30] |
miR-125b-5p | Tissue, Cell lines [17,25,26] | miR-377 | Tissue, Cell lines [25] |
miR-125b-5p | Tissue [29] | miR-378 | Tissue, Cell lines [30] |
miR-126 | Tissue, Cell lines [17,25] | miR-4282 | Tissue, Cell lines [30] |
miR-1271 | Tissue, Cell lines [17] | miR-429 | Tissue, Cell lines [17,25] |
miR-128-3p | Cell lines [17] | miR-433 | Tissue, Cell lines [17] |
miR-1291 | Tissue [17] | mir-4485 | Tissue [17] |
miR-133a-3p | Tissue, Cell lines [17,25,26,30] | miR-4488 | Tissue [17] |
miR-133a-5p | Tissue, Cell lines [17] | miR-4492 | Tissue [17] |
mir-136 | Saliva [17,31] | miR-4497 | Tissue [17] |
miR-137 | Tissue, Cell lines [17,24] | miR-4508 | Tissue [17] |
miR-138-3p | Tissue, Cell lines [17,25] | miR-451 | Tissue, Cell lines, Saliva, Serum [17] |
miR-138-5p | Tissue, Cell lines [14,17,25,26] | miR-4516 | Tissue [17] |
miR-139-5p | Tissue, Cell lines, Saliva [17,18,24,25,30,31] | miR-4532 | Tissue [17] |
miR-141 | Tissue [17] | miR-486 | Tissue, Cell lines [19,25,30] |
miR-142-3p | Saliva [28] | mir-487-3p | Tissue [30] |
miR-143 | Tissue, Cell lines [17,24,25] | miR-491-5p | Tissue [25,26] |
miR-145-5p | Tissue, Cell lines, Saliva [17,18,25,30,31] | miR-494-3p | Cell lines [17] |
miR-146a-5p | Tissue, Cell lines, Saliva [25,31] | miR-494-5p | Tissue, Cell lines [17] |
miR-147 | Saliva [17] | miR-495 | Tissue [25,26] |
miR-148a | Tissue, Saliva, Plasma [17,26] | miR-499 | Tissue [19] |
miR-149 | Tissue, Cell lines [17,30] | miR-499a | Tissue [17] |
miR-150-3p | Tissue, Cell lines [17] | miR-503 | Saliva [17] |
miR-153-3p | Tissue [26] | miR-504 | Tissue [19] |
miR-16-5p | Tissue, Cell lines [25,30] | miR-506 | Tissue [17] |
miR-17-5p | Tissue, Cell lines [25,26,30] | miR-519d | Tissue [26,32] |
miR-181a-5p | Tissue, Cell lines, Plasma [25,26] | miR-542-3p | Tissue [17] |
miR-184 | Tissue, Cell lines [24] | miR-545 | Tissue [25,26] |
miR-186 | Tissue, Cell lines, Whole blood [18,25,30] | miR-585 | Cell lines [17] |
miR-188 | Tissue, Cell lines [25] | miR-6087 | Tissue [17] |
miR-195 | Tissue, Cell lines [25,30] | miR-617 | Cell lines [30] |
miR-196-5p | Tissue [32] | miR-632 | Saliva [17] |
miR-196a-5p | Tissue, Cell lines [19] | miR-646 | Saliva [17] |
miR-198 | Cell lines [30] | miR-6510-3p | Tissue [17] |
miR-199 | Tissue [19] | miR-655 | Tissue, Cell lines [25] |
miR-199a-5p | Tissue, Cell lines [25,30] | miR-668 | Saliva [17] |
miR-200a | Saliva, Salivary exosomes [14,18,27,28,31] | miR-675 | Tissue, Cell lines [17] |
miR-200c | Tissue, Cell lines [25] | miR-7 | Saliva [27] |
miR-203 | Cell lines [25,30] | miR-758 | Saliva, Serum [18] |
miR-204-5p | Tissue, Cell lines [25] | miR-769-5p | Plasma [18] |
miR-205-5p | Tissue, Saliva [25,26,31] | miR-7704 | Tissue [17] |
miR-214 | Tissue [19] | miR-874 | Cell lines [17] |
miR-216a | Tissue, Cell lines [17] | miR-877-5p | Saliva [17] |
miR-218 | Tissue, Cell lines, Saliva [17,25,27,29] | miR-9 | Tissue, Cell lines, Serum [18,30] |
miR-22 | Tissue, Cell lines [25] | miR-9 | Tissue, Cell lines [25] |
miR-22-3p | Tissue, Cell lines [17,30] | miR-92a-3p | Saliva [31] |
miR-220a | Saliva [17] | miR-92b | Tissue [19] |
miR-221 | Tissue, Cell lines [25] | miR-93 | Saliva [28] |
miR-223 | Serum [18] | miR-98 | Tissue, Cell lines [25] |
miR-23a-3p | Tissue, Cell lines [25] | miR-99a-5p | Tissue, Cell lines, Saliva, Serum [18,24,25,28] |
miRNA | Reported Expression in OSCC | Predicted Target OSCC-Associated Tumor Suppressor Genes (5) | Target Score |
---|---|---|---|
hsa-miR-155-5p | ↑ | TP53, CDKN2A, FAT1, CASP8, PTEN | 5/5 |
hsa-miR-34a-5p | ↑ (rarely) | TP53, CDKN2A, FAT1, CASP8, PTEN | 5/5 |
miRNA | Reported Expression in OSCC | Predicted Target OSCC-associated oncogenes (15) | Target score |
hsa-miR-34a-5p | ↓ (mostly) | NOTCH1, HRAS, PIK3CA, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, FGFR4, FGF2, ETS1, JUN, MKI67, MYC, BCL2 | 15/15 |
hsa-miR-124-3p | ↓ | NOTCH1, HRAS, PIK3CA, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, FGFR4, FGF2, ETS1, JUN, MKI67, MYC, BCL2 | 12/15 |
hsa-miR-1-3p | ↓ | NOTCH1, HRAS, PIK3CA, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, FGFR4, FGF2, ETS1, JUN, MKI67, MYC, BCL2 | 10/15 |
hsa-miR-16-5p | ↓ | NOTCH1, HRAS, PIK3CA, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, FGFR4, FGF2, ETS1, JUN, MKI67, MYC, BCL2 | 9/15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gintoni, I.; Vassiliou, S.; Chrousos, G.P.; Yapijakis, C. Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma. Genes 2023, 14, 1578. https://doi.org/10.3390/genes14081578
Gintoni I, Vassiliou S, Chrousos GP, Yapijakis C. Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma. Genes. 2023; 14(8):1578. https://doi.org/10.3390/genes14081578
Chicago/Turabian StyleGintoni, Iphigenia, Stavros Vassiliou, George P. Chrousos, and Christos Yapijakis. 2023. "Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma" Genes 14, no. 8: 1578. https://doi.org/10.3390/genes14081578
APA StyleGintoni, I., Vassiliou, S., Chrousos, G. P., & Yapijakis, C. (2023). Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma. Genes, 14(8), 1578. https://doi.org/10.3390/genes14081578