Performance of KMA-ADAM3 in Identifying Asian Dust Days over Northern China
Abstract
:1. Introduction
2. Data Analysis and Methods
2.1. Asian Dust Aerosol Model 3 (ADAM3)
2.2. Threshold PM Values for Identifying Asian Dust Events
2.3. Evaluation of Accuracy
3. Results and Discussion
3.1. Assessments According to Dust Source Regions
3.2. Assessments According to Soil Types
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNEP; WMO; UNCCD. Global Assessment of Sand and Dust Storms; United Nations Environment Programme: Nairobi, Kenya, 2016; pp. 6–19, 46–62. [Google Scholar]
- Chun, Y.; Boo, K.O.; Kim, J.; Park, S.U.; Lee, M. Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res. Atmos. 2001, 106, 18461–18469. [Google Scholar] [CrossRef] [Green Version]
- Kim, J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos. Environ. 2008, 42, 4778–4789. [Google Scholar] [CrossRef]
- Shao, Y.; Klose, M.; Wyrwoll, K.H. Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 2013, 118, 11–107. [Google Scholar] [CrossRef]
- Giannadaki, D.; Pozzer, A.; Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 2014, 14, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.H.; Hong, Y.C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cho, S.H.; Chun, Y.; Lagarde, F.; Pershagen, G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. 2002, 90, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Tong, D.; Wu, G.; Dan, M.; Teng, B. A systematic review of global desert dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Sohn, B.J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmos. Environ. 2011, 45, 4611–4616. [Google Scholar] [CrossRef]
- Fan, B.; Guo, L.; Li, N.; Chen, J.; Lin, H.; Zhang, X.; Shen, M.; Rao, Y.; Wang, C.; Ma, L. Earlier vegetation green-up has reduced spring dust storms. Sci. Rep. 2014, 4, 6749. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, B.; Qian, W. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett. 2008, 35, L18702. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Liu, H.; Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sternberg, T.; Ruef, H.; Middleton, N. Contraction of the Gobi Desert, 2000–2012. Remote Sens. 2015, 7, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, X. Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy 2015, 43, 42–47. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Middleton, N. Rangeland management and climate hazards in drylands: Dust storms, desertification and the overgrazing debate. Nat. Hazards 2018, 92, 57–70. [Google Scholar] [CrossRef] [Green Version]
- In, H.J.; Park, S.U. The soil particle size dependent emission parameterization for an Asian dust (Yellow Sand) observed in Korea in April 2002. Atmos. Environ. 2003, 37, 4625–4636. [Google Scholar] [CrossRef]
- Park, S.U.; Choe, A.; Lee, E.H.; Park, M.S.; Song, X. The Asian dust aerosol model 2 (ADAM2) with the use of normalized difference vegetation index (NDVI) obtained from the Spot4/vegetation data. Theor. Appl. Climatol. 2010, 101, 191–208. [Google Scholar] [CrossRef]
- Lee, S.-S.; Lee, E.H.; Sohn, B.J.; Lee, H.C.; Cho, J.H.; Ryoo, S.-B. Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model. SOLA 2017, 13, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-S.; Lim, Y.-K.; Cho, J.H.; Lee, H.C.; Ryoo, S.-S. Improved Dust Emission Reduction Factor in the ADAM2 Model Using Real-Time MODIS NDVI. Atmosphere 2019, 10, 702. [Google Scholar] [CrossRef]
- Hong, S.K.; Ryoo, S.-S.; Kim, J.; Lee, S.-S. Prediction of Asian Dust Days over Northern China Using the KMA-ADAM2 Model. Weather Forecast 2019, 34, 1777–1787. [Google Scholar] [CrossRef]
- Park, S.U.; In, H.J. Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J. Geophys. Res. Atmos. 2003, 108, 4618. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Davies, T.; Cullen, M.J.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. Roy. Meteor. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Houyoux, M.R.; Vukovich, J.M. Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system and integration with Models-3. Emiss. Inventory: Reg. Strateg. Future 1999, 1461, 1–11. [Google Scholar]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- The Science-Policy Interface, the UNCCD Knowledge Hub, and the Analysis, Dissemination and Accessibility of Best Practices. Available online: http://www.unccd.int/sites/default/files/sessions/documents/2019-07/ICCD_COP%2814%29_17-1910488E.pdf (accessed on 20 May 2020).
Model Component | ADAM2 | ADAM3 |
---|---|---|
Data assimilation | NO DA | Optimal interpolation with surface PM10 concentration and satellite AOD |
Dust reduction factor | Based on climatological NDVI | Based on most recent NDVI |
Anthropogenic aerosol | No | Yes |
Observation | |||
---|---|---|---|
Asian dust day | non-Asian dust day | ||
Simulation | Asian dust day | H | FA |
non-Asian dust day | M | CR |
Region | Model | H | M | FA | CR | HR (%) | TS (%) | POD (%) | FAR (%) |
---|---|---|---|---|---|---|---|---|---|
A | ADAM3 | 209 | 399 | 79 | 3774 | 89.3 | 30.4 | 34.4 | 27.4 |
ADAM2 | 30 | 519 | 12 | 3900 | 88.1 | 5.4 | 5.5 | 28.6 | |
B | ADAM3 | 672 | 474 | 564 | 14,537 | 93.6 | 39.3 | 58.6 | 45.6 |
ADAM2 | 455 | 582 | 454 | 14,756 | 93.6 | 30.5 | 43.9 | 50.1 | |
C | ADAM3 | 241 | 275 | 386 | 19,203 | 96.7 | 26.7 | 46.7 | 61.6 |
ADAM2 | 160 | 253 | 434 | 19,258 | 96.6 | 18.9 | 38.7 | 73.1 | |
D | ADAM3 | 293 | 356 | 472 | 16,425 | 95.3 | 26.1 | 45.1 | 61.7 |
ADAM2 | 369 | 197 | 882 | 16,098 | 93.9 | 25.5 | 65.2 | 70.5 | |
Total | ADAM3 | 1415 | 1504 | 1501 | 53,939 | 94.9 | 32.0 | 48.5 | 51.5 |
ADAM2 | 1014 | 1151 | 1782 | 54,012 | 94.3 | 23.3 | 39.5 | 63.7 |
Soil Type | Model | H | M | FA | CR | HR (%) | TS (%) | POD (%) | FAR (%) |
---|---|---|---|---|---|---|---|---|---|
Gobi | ADAM3 | 119 | 89 | 110 | 1304 | 87.7 | 37.4 | 57.2 | 48.0 |
ADAM2 | 71 | 120 | 54 | 1377 | 89.3 | 29.0 | 37.2 | 43.2 | |
Sand | ADAM3 | 107 | 50 | 62 | 1571 | 93.7 | 48.9 | 68.2 | 36.7 |
ADAM2 | 74 | 72 | 43 | 1601 | 93.6 | 39.2 | 50.7 | 36.8 | |
Loess | ADAM3 | 435 | 398 | 722 | 26,428 | 96.0 | 28.0 | 52.2 | 62.4 |
ADAM2 | 398 | 314 | 1018 | 26,253 | 95.2 | 23.0 | 55.9 | 71.9 | |
Mixed | ADAM3 | 545 | 568 | 528 | 20,862 | 95.1 | 33.2 | 49.0 | 49.2 |
ADAM2 | 441 | 526 | 655 | 20,881 | 94.8 | 27.2 | 45.6 | 59.8 | |
Total | ADAM3 | 1206 | 1105 | 1422 | 50,165 | 95.3 | 32.3 | 52.2 | 54.1 |
ADAM2 | 984 | 1032 | 1770 | 50,112 | 94.8 | 26.0 | 48.8 | 64.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryoo, S.-B.; Kim, J.; Cho, J.H. Performance of KMA-ADAM3 in Identifying Asian Dust Days over Northern China. Atmosphere 2020, 11, 593. https://doi.org/10.3390/atmos11060593
Ryoo S-B, Kim J, Cho JH. Performance of KMA-ADAM3 in Identifying Asian Dust Days over Northern China. Atmosphere. 2020; 11(6):593. https://doi.org/10.3390/atmos11060593
Chicago/Turabian StyleRyoo, Sang-Boom, Jinwon Kim, and Jeong Hoon Cho. 2020. "Performance of KMA-ADAM3 in Identifying Asian Dust Days over Northern China" Atmosphere 11, no. 6: 593. https://doi.org/10.3390/atmos11060593
APA StyleRyoo, S. -B., Kim, J., & Cho, J. H. (2020). Performance of KMA-ADAM3 in Identifying Asian Dust Days over Northern China. Atmosphere, 11(6), 593. https://doi.org/10.3390/atmos11060593