Impact of Climate Change on Olive Crop Production in Italy
Abstract
:1. Introduction
2. Experiments
2.1. Olive Cultivation Areas
2.2. Olive Flowering Monitoring
2.3. Climate Change Diagnosis
2.4. Statistical Analysis
2.5. Future Projections
3. Results
3.1. Olive Grove Surface, Olive Fruit Production, and Pollen Production in Italian Regions
3.2. Climate Change in Italy
3.3. Regression Models with Environmental Variables
3.4. Future Olive Production Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Graaff, J.; Eppink, L.A.A.J. Olive oil production and soil conservation in southern Spain, in relation to EU subsidy policies. Land Use Policy 1999, 16, 259–267. [Google Scholar] [CrossRef]
- Egea, P.; Pérez y Pérez, L. Sustainability and multifunctionality of protected designations of origin of olive oil in Spain. Land Use Policy 2016, 58, 264–275. [Google Scholar] [CrossRef]
- Loumou, A.; Giourga, C. Olive groves: “The life and identity of the Mediterranean”. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Orlandi, F.; Aguilera, F.; Galán, C.; Msallem, M.; Fornaciari, M. Olive yields forecasts and oil price trends in Mediterranean areas: A comprehensive analysis of the last two decades. Exp. Agric. 2017, 53, 71–83. [Google Scholar] [CrossRef]
- Rojo, J.; Salido, P.; Pérez-Badia, R. Flower and pollen production in the ’Cornicabra’ olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees 2015, 29, 1235–1245. [Google Scholar] [CrossRef]
- Oteros, J.; Orlandi, F.; García-Mozo, H.; Aguilera, F.; Dhiab, A.B.; Bonofiglio, T.; Abichou, M.; Ruiz-Valenzuela, L.; del Trigo, M.M.; de La Guardia, C.D.; et al. Better prediction of Mediterranean olive production using pollen-based models. Agron. Sustain. Dev. 2014, 34, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Dhiab, A.B.; Mimoun, M.B.; Oteros, J.; Garcia-Mozo, H.; Domínguez-Vilches, E.; Galán, C.; Abichou, M.; Msallem, M. Modeling olive-crop forecasting in Tunisia. Theor. Appl. Climatol. 2017, 128, 541–549. [Google Scholar] [CrossRef]
- Rojo, J.; Pérez-Badia, R. Spatiotemporal analysis of olive flowering using geostatistical techniques. Sci. Total Environ. 2015, 505, 860–869. [Google Scholar] [CrossRef]
- Lionello, P.; Congedi, L.; Reale, M.; Scarascia, L.; Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Change 2014, 14, 2025–2038. [Google Scholar] [CrossRef]
- Ribeiro, H.; Cunha, M.; Abreu, I. Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model. Aerobiologia 2008, 24, 141. [Google Scholar] [CrossRef]
- Aguilera, F.; Ruiz, L.; Fornaciari, M.; Romano, B.; Galán, C.; Oteros, J.; Dhiab, A.B.; Msallem, M.; Orlandi, F. Heat accumulation period in the Mediterranean region: Phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int. J. Biometeorol. 2014, 58, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Rallo, L.; Martin, G.C. The role of chilling and releasing olive floral buds from dormancy. HortScience 1991, 26, 751. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Pinto, J.G.; Viola, F.; Santos, J.A. Climate change projections for olive yields in the Mediterranean Basin. Int. J. Climatol. 2020, 40, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Norrant, C.; Douguédroit, A. Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor. Appl. Climatol. 2006, 83, 89–106. [Google Scholar] [CrossRef]
- Guiot, J.; Cramer, W. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 2016, 354, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, A.A.; Iyer, G.C.; Clarke, L.E.; Edmonds, J.A.; Hultman, N.E.; McJeon, H.C.; Rogelj, J.; Schuler, R.; Alsalam, J.; Asrar, G.R.; et al. Can Paris pledges avert severe climate change? Science 2015, 350, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; ISBN 978-92-9169-143-2. [Google Scholar]
- Orlandi, F.; Sgromo, C.; Bonofiglio, T.; Ruga, L.; Romano, B.; Fornaciari, M. Spring Influences on Olive Flowering and Threshold Temperatures Related to Reproductive Structure Formation. HortScience 2010, 45, 1052–1057. [Google Scholar] [CrossRef]
- ISTAT Instituto Nazionale di Statistica. Available online: http://agri.istat.it/ (accessed on 12 December 2019).
- European Union, Copernicus Land Monitoring Service Corine Land Cover. European Environment Agency (EEA). 2018. Available online: https://land.copernicus.eu/ (accessed on 12 January 2020).
- Rojo, J.; Orlandi, F.; Pérez-Badia, R.; Aguilera, F.; Ben Dhiab, A.; Bouziane, H.; Díaz de la Guardia, C.; Galán, C.; Gutiérrez-Bustillo, A.M.; Moreno-Grau, S.; et al. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Sci. Total Environ. 2016, 551–552, 73–82. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Rojo, J.; Núñez, A.; Lara, B.; Sánchez-Parra, B.; Moreno, D.A.; Pérez-Badia, R. Comprehensive analysis of different adhesives in aerobiological sampling using optical microscopy and high-throughput DNA sequencing. J. Environ. Manage. 2019, 240, 441–450. [Google Scholar] [CrossRef]
- Jäger, S.; Mandrioli, P.; Spieksma, F.; Emberlin, J.; Hjelmroos, M.; Rantio-Lehtimäki, A.; Domínguez-Vilches, E.; Ickovic, M.-R. Methodology for routinely performed monitoring of airborne pollen recommendations. Aerobiologia 1995, 11, 69. [Google Scholar] [CrossRef]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S. Recommended terminology for aerobiological studies. Aerobiología 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Cornes, R.C.; Van der Schrier, G.; Van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmospheres 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Fleskens, L. A typology of sloping and mountainous olive plantation systems to address natural resources management. Ann. Appl. Biol. 2008, 153, 283–297. [Google Scholar] [CrossRef]
- Stillitano, T.; De Luca, A.I.; Iofrida, N.; Falcone, G.; Spada, E.; Gulisano, G. Economic analysis of olive oil production systems in southern Italy. Calitatea 2017, 18, 107. [Google Scholar]
- Melgar, J.C.; Mohamed, Y.; Navarro, C.; Parra, M.A.; Benlloch, M.; Fernández-Escobar, R. Long-term growth and yield responses of olive trees to different irrigation regimes. Agric. Water Manag. 2008, 95, 968–972. [Google Scholar] [CrossRef]
- Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contò, F.; Huisingh, D. Application of water footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod. 2016, 112, 2407–2418. [Google Scholar] [CrossRef]
- Stroosnijder, L.; Mansinho, M.I.; Palese, A.M. OLIVERO: The project analysing the future of olive production systems on sloping land in the Mediterranean basin. J. Environ. Manage. 2008, 89, 75–85. [Google Scholar] [CrossRef]
- de Graaff, J.; Duran Zuazo, V.-H.; Jones, N.; Fleskens, L. Olive production systems on sloping land: Prospects and scenarios. J. Environ. Manage. 2008, 89, 129–139. [Google Scholar] [CrossRef]
- Duarte, F.; Jones, N.; Fleskens, L. Traditional olive orchards on sloping land: Sustainability or abandonment? J. Environ. Manage. 2008, 89, 86–98. [Google Scholar] [CrossRef]
- White, S.M.; Bullock, J.M.; Hooftman, D.A.P.; Chapman, D.S. Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biol. Invasions 2017, 19, 1825–1837. [Google Scholar] [CrossRef] [Green Version]
- Martelli, G.P.; Boscia, D.; Porcelli, F.; Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 2016, 144, 235–243. [Google Scholar] [CrossRef]
- Ribeiro, H.; Abreu, I.; Cunha, M. Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically. Aerobiologia 2017, 33, 473–480. [Google Scholar] [CrossRef]
- Sarri, V.; Baldoni, L.; Porceddu, A.; Cultrera, N.G.M.; Contento, A.; Frediani, M.; Belaj, A.; Trujillo, I.; Cionini, P.G. Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 2006, 49, 1606–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotondi, A.; Magli, M.; Ricciolini, C.; Baldoni, L. Morphological and molecular analyses for the characterization of a group of Italian olive cultivars. Euphytica 2003, 132, 129–137. [Google Scholar] [CrossRef]
- Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S. Towards adaptation of agriculture to climate change in the Mediterranean. Reg. Environ. Change 2011, 11, 159–166. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, S.; Iglesias, A. A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain. Agric. Syst. 2009, 101, 91–100. [Google Scholar] [CrossRef]
- Connor, D.J.; Fereres, E. The Physiology of Adaptation and Yield Expression in Olive. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Oxford, UK, 2010; pp. 155–229. ISBN 978-0-470-65088-2. [Google Scholar]
- Angelopoulos, K.; Dichio, B.; Xiloyannis, C. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J. Exp. Bot. 1996, 47, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Connor, D.J. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 2005, 56, 1181–1189. [Google Scholar] [CrossRef]
- Moriana, A.; Villalobos, F.J.; Fereres, E. Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ. 2002, 25, 395–405. [Google Scholar] [CrossRef]
- Giorio, P.; Sorrentino, G.; d’Andria, R. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ. Exp. Bot. 1999, 42, 95–104. [Google Scholar] [CrossRef]
- Manning, W.J.; Tiedemann, A.V. Climate change: Potential effects of increased atmospheric Carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 1995, 88, 219–245. [Google Scholar] [CrossRef]
- Rapoport, H.F.; Hammami, S.B.M.; Martins, P.; Pérez-Priego, O.; Orgaz, F. Influence of water deficits at different times during olive tree inflorescence and flower development. Environ. Exp. Bot. 2012, 77, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Rojo, J.; Pérez-Badia, R. Effects of topography and crown-exposure on olive tree phenology. Trees 2014, 28, 449–459. [Google Scholar] [CrossRef]
- Orlandi, F.; Garcia-Mozo, H.; Dhiab, A.B.; Galán, C.; Msallem, M.; Romano, B.; Abichou, M.; Dominguez-Vilches, E.; Fornaciari, M. Climatic indices in the interpretation of the phenological phases of the olive in mediterranean areas during its biological cycle. Clim. Change 2013, 116, 263–284. [Google Scholar] [CrossRef]
- Oteros, J.; García-Mozo, H.; Vázquez, L.; Mestre, A.; Domínguez-Vilches, E.; Galán, C. Modelling olive phenological response to weather and topography. Agric. Ecosyst. Environ. 2013, 179, 62–68. [Google Scholar] [CrossRef]
- Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. Modelling olive trees and grapevines in a changing climate. Environ. Model. Softw. 2015, 72, 387–401. [Google Scholar] [CrossRef]
- Valdes-Abellan, J.; Pardo, M.A.; Tenza-Abril, A.J. Observed precipitation trend changes in the western Mediterranean region. Int. J. Climatol. 2017, 37, 1285–1296. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Zimmermann, J.; Hauck, M.; Dulamsuren, C.; Leuschner, C. Climate Warming-Related Growth Decline Affects Fagus sylvatica, But Not Other Broad-Leaved Tree Species in Central European Mixed Forests. Ecosystems 2015, 18, 560–572. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.; Moreno, M.; Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 2019, 136161. [Google Scholar] [CrossRef]
- Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 2014, 144, 54–68. [Google Scholar] [CrossRef]
- Viola, F.; Caracciolo, D.; Pumo, D.; Noto, L.V.; Loggia, G.L. Future Climate Forcings and Olive Yield in a Mediterranean Orchard. Water 2014, 6, 1562–1580. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Berglund, M.; Kurnik, B.; Dworak, T.; Marras, S.; Mereu, V.; Michetti, M. Climate Change Adaptation in the Agriculture Sector in Europe (No. 4/2019); European Environment Agency (EEA): Luxembourg, 2019.
- Palese, A.M.; Pergola, M.; Favia, M.; Xiloyannis, C.; Celano, G. A sustainable model for the management of olive orchards located in semi-arid marginal areas: Some remarks and indications for policy makers. Environ. Sci. Policy 2013, 27, 81–90. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Kundzewicz, Z.W.; Szwed, M.; Chorynski, A.; Matczak, P.; Radziejewski, M.; McEvoy, D.; Wreford, A. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Change 2010, 15, 657–679. [Google Scholar] [CrossRef]
- De Luca, A.I.; Falcone, G.; Stillitano, T.; Iofrida, N.; Strano, A.; Gulisano, G. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 2018, 171, 1187–1202. [Google Scholar] [CrossRef]
- Ronchail, J.; Cohen, M.; Alonso-Roldán, M.; Garcin, H.; Sultan, B.; Angles, S. Adaptability of Mediterranean Agricultural Systems to Climate Change: The Example of the Sierra Mágina Olive-Growing Region (Andalusia, Spain). Part II: The Future. Weather Clim. Soc. 2014, 6, 451–467. [Google Scholar] [CrossRef] [Green Version]
Province | Olive Cultivation Area (Ha) | Olive Production (ton) | Annual Pollen Integral (pollen*day/m3) | Main Olive Cultivars | ||||
---|---|---|---|---|---|---|---|---|
Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | |||
AGRIGENTO | 25,551 | 0.008 | 57,693 | 0.230 | 5821 | 0.555 | Biancolilla, Cerasuola | |
MESSINA | 35,122 | 0.000 | 28,131 | 0.427 | 21,491 | 0.233 | Minuta, Verdello | |
PALERMO | 22,870 | 0.001 | 42,353 | 0.475 | 10,538 | 0.508 | Ogliarola messinese, Biancolilla | |
TRAPANI | 19,500 | 0.051 | 39,189 | 0.246 | 10,673 | 0.460 | Nocellara del Belice, Giarraffa | |
CATANZARO | 44,627 | 0.071 | 150,783 | 0.201 | 15,745 | 0.839 | Carolea, Frantoio, Ottobratica | |
COSENZA | 49,755 | 0.000 | 205,582 | 0.190 | 28,032 | 0.669 | Cassanese, Carolea | |
R.CALABRIA | 57,705 | 0.000 | 440,528 | 0.204 | 14,303 | 0.745 | Ottobratica, Cassanese | |
BARI | 119,567 | 0.143 | 399,413 | 0.264 | 19,535 | 0.550 | Coratina, Ogliarola Barese | |
BRINDISI | 63,600 | 0.000 | 173,808 | 0.201 | 22,571 | 0.585 | Ogliarola salentina, Coratina | |
FOGGIA | 54,167 | 0.027 | 160,057 | 0.179 | 12,966 | 0.866 | Peranzana, Ogliarola | |
LECCE | 90,974 | 0.010 | 342,351 | 0.221 | 24,094 | 0.378 | Cellina di Nardo, Ogliarola salentina | |
TARANTO | 37,367 | 0.032 | 102,401 | 0.313 | 16,683 | 0.583 | Cellina di Nardo, Coratina | |
AVELLINO | 8376 | 0.012 | 18,718 | 0.261 | 12,889 | 1.091 | Ravece, Olivella | |
BENEVENTO | 13,798 | 0.002 | 33,650 | 0.268 | 6695 | 0.793 | Ortolana, Ortice | |
SALERNO | 39,892 | 0.032 | 127,406 | 0.252 | 10,539 | 0.887 | Rotondella, Carpellese, Frantoio | |
PERUGIA | 18,204 | 0.000 | 42,860 | 0.328 | 2868 | 0.683 | Leccino, Frantoio, Moraiolo, D.Agogia |
Parameters | Values | Variables | Coefficients | SE | t-Value |
---|---|---|---|---|---|
AGRIGENTO | |||||
Number variables | 3 | Intercept | 96,870.6047 | 8,103.9164 | 11.9536 *** |
R2 | 0.9081 | Pollen | 2.0321 | 0.4318 | 4.7058 *** |
Adj R2 | 0.8805 | TminMay | −6,524.3502 | 973.6561 | −6.7009 *** |
Square Root of MSE | 4,588.5720 | PrecJul | 1,331.2963 | 214.5146 | 6.2061 *** |
TRAPANI | |||||
Number variables | 3 | Intercept | 137,190.2683 | 46,517.6698 | 2.9492 * |
R2 | 0.8554 | Pollen | 0.7954 | 0.2919 | 2.7244 * |
Adj R2 | 0.8120 | TmaxAug | −3,582.5020 | 1,495.3202 | −2.3958 * |
Square Root of MSE | 4,175.5278 | PrecJul | 2,738.5026 | 1,014.3713 | 2.6997 * |
MESSINA | |||||
Number variables | 3 | Intercept | 125,813.4273 | 31,010.3147 | 4.0571 ** |
R2 | 0.8316 | Pollen | 1.3411 | 0.3342 | 4.0134 ** |
Adj R2 | 0.7811 | TmaxMar | −7,546.7548 | 1,653.5233 | −4.5640 ** |
Square Root of MSE | 5,624.5244 | PrecJun | 154.9817 | 59.0929 | 2.6227 * |
BRINDISI | |||||
Number variables | 3 | Intercept | 439,816.2182 | 79,471.3284 | 5.5343 *** |
R2 | 0.7310 | Pollen | 0.7975 | 0.4398 | 1.8134 |
Adj R2 | 0.6503 | TminApr | −15,897.9811 | 4,415.8283 | −3.6002 ** |
Square Root of MSE | 20,653.1753 | TminJun | −10,028.8167 | 5,467.5199 | −1.8343 |
FOGGIA | |||||
Number variables | 3 | Intercept | 425,863.9044 | 42,372.8550 | 10.0504 *** |
R2 | 0.9029 | Pollen | 0.9989 | 0.2631 | 3.7973 ** |
Adj R2 | 0.8738 | TminMAM | −34,377.1452 | 4,853.2473 | −7.0833 *** |
Square Root of MSE | 10,163.0282 | PrecJJA | 534.2408 | 216.8915 | 2.4632 * |
LECCE | |||||
Number variables | 3 | Intercept | 715,385.5643 | 21,195.1599 | 3.3758 ** |
R2 | 0.8262 | Pollen | 3.6377 | 1.1685 | 3.1131 * |
Adj R2 | 0.7741 | TminAug | −24,996.6811 | 10,270.8654 | −2.4337 * |
Square Root of MSE | 35,927.5585 | PrecAug | 1,279.8089 | 490.2593 | 2.6105 * |
COSENZA | |||||
Number variables | 3 | Intercept | 1272,059.857 | 16,494.7478 | 7.7122 *** |
R2 | 0.8417 | Pollen | 0.9565 | 0.3418 | 2.7986 * |
Adj R2 | 0.7942 | TmaxApr | −32,195.1317 | 7,281.8865 | −4.4213 ** |
Square Root of MSE | 17,692.3170 | TmaxMay | −17,237.8863 | 6,159.7210 | −2.7985 * |
SALERNO | |||||
Number variables | 3 | Intercept | 598,829.7079 | 132,125.971 | 4.5323 ** |
R2 | 0.7337 | Pollen | 1.5739 | 0.5735 | 2.7444 * |
Adj R2 | 0.6538 | TmaxMay | −10,671.3071 | 4,236.2426 | −2.5191 * |
Square Root of MSE | 18,891.0535 | TminMAM | −28,199.9010 | 9,266.5209 | −3.0432 * |
PERUGIA | |||||
Number variables | 3 | Intercept | 119,825.9852 | 46,966.5717 | 2.5513 * |
R2 | 0.8589 | Pollen | 2.9491 | 1.2006 | 2.4563 * |
Adj R2 | 0.8165 | TmaxJul | −3381.5286 | 1,402.7783 | −2.4106 * |
Square Root of MSE | 6,022.4721 | PrecMAM | 372.3352 | 153.0763 | 2.4323 * |
AGRIGENTO | MESSINA | TRAPANI | ||||||
Production | Variable1 | Variable2 | Production | Variable1 | Variable2 | Production | Variable1 | Variable2 |
TminMay | PrecJul | TmaxMar | PrecJun | TmaxAug | PrecJul | |||
−0.55% | 0% | −5% | −0.77% | 0% | −5% | −0.56% | 0% | −5% |
−0.99% | 0% | −10% | −1.39% | 0% | −10% | −1.02% | 0% | −10% |
−4.97% | 5% | 0% | −23.26% | 5% | 0% | −14.15% | 5% | 0% |
−10.94% | 10% | 0% | −51.17% | 10% | 0% | −31.13% | 10% | 0% |
−5.53% | 5% | −5% | −24.03% | 5% | −5% | −14.72% | 5% | −5% |
−5.97% | 5% | −10% | −24.65% | 5% | −10% | −15.17% | 5% | −10% |
−11.49% | 10% | −5% | −51.94% | 10% | −5% | −31.70% | 10% | −5% |
−11.94% | 10% | −10% | −52.56% | 10% | −10% | −32.15% | 10% | −10% |
BRINDISI | FOGGIA | LECCE | ||||||
Production | Variable1 | Variable2 | Production | Variable1 | Variable2 | Production | Variable1 | Variable2 |
TminApr | TminJun | TminMAM | PrecJJA | TminAug | PrecAug | |||
−4.51% | 0% | 5% | −0.27% | 0% | −5% | −0.30% | 0% | −5% |
−9.93% | 0% | 10% | −0.49% | 0% | −10% | −0.53% | 0% | −10% |
−3.66% | 5% | 0% | −8.98% | 5% | 0% | −7.03% | 5% | 0% |
−8.05% | 10% | 0% | −19.75% | 10% | 0% | −15.46% | 10% | 0% |
−8.17% | 5% | 5% | −9.25% | 5% | −5% | −7.32% | 5% | −5% |
−13.58% | 5% | 10% | −9.47% | 5% | −10% | −7.56% | 5% | −10% |
−12.56% | 10% | 5% | −20.03% | 10% | −5% | −15.75% | 10% | −5% |
−17.97% | 10% | 10% | −20.24% | 10% | −10% | −15.99% | 10% | −10% |
COSENZA | SALERNO | PERUGIA | ||||||
Production | Variable1 | Variable2 | Production | Variable1 | Variable2 | Production | Variable1 | Variable2 |
TmaxApr | TmaxMay | TmaxMay | TminMAM | TmaxJul | PrecMAM | |||
−10.77% | 0% | 5% | −9.03% | 0% | 5% | −2.53% | 0% | −5% |
−23.68% | 0% | 10% | −19.86% | 0% | 10% | −4.55% | 0% | −10% |
−15.82% | 5% | 0% | −10.12% | 5% | 0% | −12.81% | 5% | 0% |
−34.81% | 10% | 0% | −22.27% | 10% | 0% | −28.18% | 10% | 0% |
−26.59% | 5% | 5% | −19.15% | 5% | 5% | −15.34% | 5% | −5% |
−39.51% | 5% | 10% | −29.99% | 5% | 10% | −17.36% | 5% | −10% |
−45.58% | 10% | 5% | −31.30% | 10% | 5% | −30.71% | 10% | −5% |
−58.50% | 10% | 10% | −42.13% | 10% | 10% | −32.73% | 10% | −10% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere 2020, 11, 595. https://doi.org/10.3390/atmos11060595
Orlandi F, Rojo J, Picornell A, Oteros J, Pérez-Badia R, Fornaciari M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere. 2020; 11(6):595. https://doi.org/10.3390/atmos11060595
Chicago/Turabian StyleOrlandi, Fabio, Jesús Rojo, Antonio Picornell, Jose Oteros, Rosa Pérez-Badia, and Marco Fornaciari. 2020. "Impact of Climate Change on Olive Crop Production in Italy" Atmosphere 11, no. 6: 595. https://doi.org/10.3390/atmos11060595
APA StyleOrlandi, F., Rojo, J., Picornell, A., Oteros, J., Pérez-Badia, R., & Fornaciari, M. (2020). Impact of Climate Change on Olive Crop Production in Italy. Atmosphere, 11(6), 595. https://doi.org/10.3390/atmos11060595