Objective Identification and Multi-Scale Controlling Factors of Extreme Heat-Wave Events in Southern China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Method to Define Heat-Wave Events
2.3. Definition of Heat-Wave Compound Index
3. The Objective Identification of the EHW Events
4. The Multi-Scale Controlling Factors of the EHW Events
4.1. Multi-Scale Features Associated with the EHW Events
4.2. Impacts of Intra-Seasonal Variability on the Life-Cycle of the EHW Events
4.3. Why Some Specific Years Are Favored for the Occurrences of the EHW Events?
5. Concluding Remarks and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Number | Start | End | Duration (Days) | Station (Number) | Intensity-S(i) | Index-C(i) |
---|---|---|---|---|---|---|
1 | 13 July 2003 | 11 August 2003 | 30 | 129 | 0.89 | 7.2171 |
2 | 23 July 2013 | 15 August 2013 | 24 | 70 | 1.54 | 5.6005 |
3 | 20 July 2007 | 11 August 2007 | 23 | 95 | 0.89 | 4.7251 |
4 | 20 July 2016 | 2 August 2016 | 14 | 106 | 0.89 | 3.4401 |
5 | 12 July 2017 | 29 July 2017 | 18 | 79 | 0.9 | 3.2598 |
6 | 29 July 2010 | 16 August 2010 | 19 | 70 | 0.87 | 3.0575 |
7 | 23 July 2011 | 4 August 2011 | 13 | 101 | 0.55 | 2.2596 |
8 | 21 July 2014 | 5 August 2014 | 16 | 76 | 0.43 | 1.6505 |
9 | 24 July 2008 | 31 July 2008 | 8 | 69 | 0.99 | 1.2695 |
10 | 19 August 2009 | 28 August 2009 | 10 | 99 | 0.33 | 1.1023 |
11 | 14 July 2005 | 20 July 2005 | 7 | 67 | 1.01 | 1.0619 |
12 | 21 July 2000 | 29 July 2000 | 9 | 84 | 0.57 | 0.969 |
13 | 14 July 2009 | 23 July 2009 | 10 | 45 | 1.03 | 0.8954 |
14 | 2 August 2004 | 10 August 2004 | 9 | 74 | 0.62 | 0.7388 |
15 | 26 July 2005 | 1 August 2005 | 7 | 83 | 0.57 | 0.5626 |
16 | 12 August 2011 | 19 August 2011 | 8 | 55 | 0.86 | 0.4651 |
17 | 10 August 2016 | 25 August 2016 | 16 | 49 | 0.3 | 0.3902 |
18 | 10 August 2006 | 19 August 2006 | 10 | 68 | 0.4 | 0.1837 |
19 | 26 June 2004 | 3 July 2004 | 8 | 66 | 0.51 | 0.0074 |
20 | 23 August 2003 | 29 August 2003 | 7 | 56 | 0.73 | 0.0012 |
21 | 23 July 2004 | 29 July 2004 | 7 | 52 | 0.73 | −0.1391 |
22 | 1 July 2010 | 15 July 2010 | 15 | 32 | 0.37 | −0.2229 |
23 | 11 July 2002 | 18 July 2002 | 8 | 65 | 0.39 | −0.3169 |
24 | 1 August 2015 | 7 August 2015 | 7 | 37 | 0.84 | −0.4 |
25 | 20 July 2001 | 30 July 2001 | 11 | 41 | 0.46 | −0.433 |
26 | 15 September 2005 | 21 September 2005 | 7 | 36 | 0.73 | −0.7002 |
27 | 13 August 2008 | 20 August 2008 | 8 | 24 | 0.79 | −0.7908 |
28 | 3 July 2001 | 11 July 2001 | 9 | 23 | 0.71 | −0.8331 |
29 | 19 July 2006 | 26 July 2006 | 8 | 63 | 0.08 | −1.1341 |
30 | 11 August 2005 | 15 August 2005 | 5 | 26 | 0.76 | −1.35 |
31 | 27 June 2015 | 3 July 2015 | 7 | 24 | 0.62 | −1.3862 |
32 | 2 September 2009 | 9 September 2009 | 8 | 53 | 0.09 | −1.4608 |
33 | 14 August 2017 | 21 August 2017 | 8 | 36 | 0.32 | −1.5027 |
34 | 10 July 2015 | 16 July 2015 | 7 | 37 | 0.31 | −1.6774 |
35 | 15 September 2010 | 21 September 2010 | 7 | 32 | 0.17 | −2.1902 |
36 | 22 August 2011 | 29 August 2011 | 8 | 11 | 0.35 | −2.3072 |
37 | 15 September 2008 | 23 September 2008 | 9 | 26 | −0.05 | −2.5595 |
38 | 20 August 2001 | 25 August 2001 | 6 | 30 | 0.12 | −2.5665 |
39 | 22 June 2016 | 28 June 2016 | 7 | 30 | 0.02 | −2.6218 |
40 | 22 July 2012 | 28 July 2012 | 7 | 10 | 0.14 | −3.0341 |
41 | 4 September 2003 | 10 September 2003 | 7 | 11 | −0.07 | −3.5051 |
42 | 23 August 2002 | 31 August 2002 | 9 | 27 | −0.54 | −3.7054 |
43 | 11 August 2012 | 18 August 2012 | 8 | 24 | −0.55 | −4.0203 |
References
- World Meteorological Organization (WMO). Seamless Prediction of the Earth System: From Minutes to Months; WMO-No1156; WMO: Geneva, Switzerland, 2015. [Google Scholar]
- Ding, T.; Qian, W.H. Statistical characteristics of heat wave precursors in China and model prediction. Chin. J. Geophys. 2012, 55, 1472–1486. (In Chinese) [Google Scholar]
- Tang, T.; Jin, R.H.; Peng, X.Y.; Niu, R.Y. The analysis of causes about extremely high temperature in the summer of 2013 year in the southern region. J. Chengdu Univ. Inf. Technol. 2014, 29, 652–659. (In Chinese) [Google Scholar]
- Wang, W.W.; Zhou, W.; Wang, X.; Fong, S.K.; Leong, K.C. Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos. 2013, 118, 8306–8319. [Google Scholar] [CrossRef]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Evolutions of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in South China. J. Clim. 2016, 19, 6909–6921. [Google Scholar] [CrossRef]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Large-scale circulation anomalies and intraseasonal oscillations associated with long-lived extreme heat events in South China. J. Clim. 2018, 31, 213–232. [Google Scholar] [CrossRef]
- Deng, K.Q.; Yang, S.; Ting, M.F.; Zhao, P.; Wang, Z.Y. Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. J. Clim. 2019, 32, 3761–3775. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; Jia, X.L.; Zhao, X.C. Analysis on the extreme heat wave over China around Yangtze River region in the summer of 2013 and its main contributing factors. Adv. Meteorol. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.W.; Zhou, W.; Liu, X.Z.; Wang, X.; Wang, D.X. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wang, J.S.; Guo, J.T.; Lu, X.D. Evolution characteristics of the extreme high temperature event in Northwest China from 1961 to 2009. J. Nat. Res. 2012, 27, 832–844. (In Chinese) [Google Scholar]
- Loikith, P.C.; Broccoli, A.J. Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Clim. 2012, 25, 7266–7281. [Google Scholar] [CrossRef]
- Gao, M.N.; Yang, J.; Wang, B.; Zhou, S.Y.; Gong, D.Y.; Kim, S.J. How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Clim. Dyn. 2018, 51, 4421–4437. [Google Scholar] [CrossRef]
- Diao, Y.F.; Li, T.; Hsu, P.C. Influence of the boreal summer intraseasonal oscillation on extreme temperature events in the northern hemisphere. J. Meteorol. Res. 2018, 32, 534–547. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Simultaneous modulations of precipitation and temperature extremes in Southern parts of China by the boreal summer intraseasonal oscillation. Clim. Dyn. 2017, 49, 3363–3381. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Qian, W.H.; Yan, Z.W. Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol. 2010, 30, 1452–1462. [Google Scholar] [CrossRef]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Clim. Dyn. 2018, 51, 2113–2126. [Google Scholar] [CrossRef]
- Song, L.; Wu, R.G.; Jiao, Y. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China. Clim. Dyn. 2018, 50, 4619–4634. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W.H. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci. 2011, 28, 322–337. [Google Scholar] [CrossRef]
- Hersbach, H.; de Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP; ERA Report Series No. 27; ECMWF: Reading, UK, 2018. [Google Scholar]
- Stefanon, M.; D’Andrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Zscheischler, J.; Mahecha, M.D.; Harmeling, S.; Reichstein, M. Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol. Inform. 2013, 15, 66–73. [Google Scholar] [CrossRef]
- Russo, S.; Jana, S.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 1–15. [Google Scholar] [CrossRef]
- Lyon, B.; Barnston, A.G.; Coffel, E.; Horton, R.M. Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes. Environ. Res. Lett. 2019, 14, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yuan, N.W. Comparison and selection of index standardization method in linear comprehensive evaluation model. Stat. Inf. Forum 2010, 25, 10–15. (In Chinese) [Google Scholar]
- Zhai, P.M.; Pan, X.H. Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett. 2003, 30, 169–172. [Google Scholar] [CrossRef]
- Wei, K.; Chen, W. Climatology and trends of high temperature extremes across China in summer. Atmos. Ocean. Sci. Lett. 2009, 2, 153–158. [Google Scholar]
- Huang, D.Q.; Qian, Y.F.; Zhu, J. Trends of temperature extremes in China and their relationship with global temperature anomalies. Adv. Atmos. Sci. 2010, 27, 937–946. [Google Scholar] [CrossRef]
- Qian, C.; Yan, Z.W.; Wu, Z.H.; Fu, C.B.; Tu, K. Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China. Adv. Atmos. Sci. 2011, 28, 297–309. [Google Scholar] [CrossRef]
- Sun, J.Q.; Wang, H.J.; Yuan, W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Clim. Environ. Res. 2011, 2, 199–208. (In Chinese) [Google Scholar]
- Wei, K.; Chen, W. An abrupt increase in the summer high temperature extreme days across China in the mid-1990s. Adv. Atmos. Sci. 2011, 5, 1023–1029. [Google Scholar] [CrossRef]
- Masato, M. Large-scale aspects of deep convective activity over the GATE area. Mon. Weather Rev. 1979, 107, 994–1013. [Google Scholar]
- Lu, R.Y.; Chen, R.D. A review of recent studies on extreme heat in China. Atmos. Ocean. Sci. Lett. 2016, 9, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Sun, J.H. The analysis of summer heat wave and sultry weather in north China. Clim. Environ. Res. 2007, 12, 453–463. (In Chinese) [Google Scholar]
- Xie, Y.B.; Chen, S.J.; Chang, I.L.; Huang, Y.L. A preliminarily statistic and synoptic study about the basic currents over southeastern Asia and the initiation of typhoons. Acta Meteorol. Sin. 1963, 33, 206–217. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Xie, X. A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci. 1997, 54, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.X.; Wang, B.; Tao, L. Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett. 2006, 33, L03705. [Google Scholar] [CrossRef] [Green Version]
- Madden, R.A.; Julian, P.R. Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar] [CrossRef]
- Yasunari, T. Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteorol. Soc. Jpn. 1979, 57, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.Y.; Wang, B. Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J. Clim. 2003, 16, 3572–3584. [Google Scholar] [CrossRef] [Green Version]
- Lorenc, A.C. The evolution of planetary-scale 200-mb divergent flow during the FGGE year. Quart. J. R. Meteorol. Soc. 1984, 72, 401–412. [Google Scholar] [CrossRef]
- Knutson, T.R.; Weickmann, K.M.; Kutzbach, J.E. Global-scale intraseasonal oscillations of outgoing longwave radiation and 250mb zonal wind using Northern Hemisphere summer. Mon. Weather Rev. 1986, 114, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.X.; Wang, W.Q.; Ren, H.L.; Jia, X.L.; Shinoda, T. Three different downstream fates of the boreal-summer MJOs on their passages over the Maritime Continent. Clim. Dyn. 2017. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.X.; Lee, J.Y.; Hsu, P.C.; Taniguchi, H.; Wang, B.; Wang, W.Q.; Weaver, S. Multi-model MJO forecasting during DYNAMO period. Clim. Dyn. 2013, 41, 1067–1081. [Google Scholar] [CrossRef] [Green Version]
- Vitart, F.; Robertson, A.W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. Npj Clim. Atmos. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.; Ren, H.L.; Fu, J.X.; Wu, J.; Du, L. Impact of boreal summer intraseasonal oscillation on rainfall extremes in southeastern China and its predictability in CFSv2. J. Geophys. Res. Atmos. 2018, 123, 4423–4442. [Google Scholar] [CrossRef]
- Li, H.M.; Feng, L.; Zhou, T.J. Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv. Atmos. Sci. 2011, 28, 448–463. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, J.; Shi, Y.; Zhou, B.T.; Li, R.K.; Wu, J. Change in extreme climate events over China based on CMIP5. Atmos. Ocean. Sci. Lett. 2015, 8, 185–192. [Google Scholar]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbosa, P.; Vogt, J.V.; et al. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Cassou, C.; Terray, L.; Phillips, A.S. Tropical Atlantic influence on European heat waves. J. Clim. 2005, 18, 2805–2811. [Google Scholar] [CrossRef]
- Harpaz, T.; Ziv, B.; Saaroni, H.; Beja, E. Extreme summer temperatures in the East Mediterranean-Dynamical analysis. Int. J. Climatol. 2014, 34, 849–862. [Google Scholar] [CrossRef]
- Takane, Y.; Kusaka, H.; Kondo, H. Climatological study on mesoscale extreme high temperature events in the inland of the Tokyo Metropolitan Area, Japan, during the past 22 years. Int. J. Climatol. 2014, 34, 3926–3938. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.; Hernández, E. Extreme summer temperatures in Iberia: Health impacts and associated synoptic conditions. Ann. Geophys. 2005, 23, 239–251. [Google Scholar] [CrossRef] [Green Version]
Number | Start | End | Duration (Days) | Station (Number) | Intensity-S(i) | Index-C(i) |
---|---|---|---|---|---|---|
1 | 13 July 2003 | 11 August 2003 | 30 | 129 | 0.89 | 7.2171 |
2 | 23 July 2013 | 15 August 2013 | 24 | 70 | 1.54 | 5.6005 |
3 | 20 July 2007 | 11 August 2007 | 23 | 95 | 0.89 | 4.7251 |
4 | 20 July 2016 | 2 August 2016 | 14 | 106 | 0.89 | 3.4401 |
5 | 12 July 2017 | 29 July 2017 | 18 | 79 | 0.9 | 3.2598 |
6 | 29 July 2010 | 16 August 2010 | 19 | 70 | 0.87 | 3.0575 |
7 | 23 July 2011 | 4 August 2011 | 13 | 101 | 0.55 | 2.2596 |
8 | 21 July 2014 | 5 August 2014 | 16 | 76 | 0.43 | 1.6505 |
9 | 24 July 2008 | 31 July 2008 | 8 | 69 | 0.99 | 1.2695 |
10 | 19 August 2009 | 28 August 2009 | 10 | 99 | 0.33 | 1.1023 |
11 | 14 July 2005 | 20 July 2005 | 7 | 67 | 1.01 | 1.0619 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Fu, J.-X.; Li, G. Objective Identification and Multi-Scale Controlling Factors of Extreme Heat-Wave Events in Southern China. Atmosphere 2020, 11, 668. https://doi.org/10.3390/atmos11060668
Chen W, Fu J-X, Li G. Objective Identification and Multi-Scale Controlling Factors of Extreme Heat-Wave Events in Southern China. Atmosphere. 2020; 11(6):668. https://doi.org/10.3390/atmos11060668
Chicago/Turabian StyleChen, Wenjiang, Joshua-Xiouhua Fu, and Guoping Li. 2020. "Objective Identification and Multi-Scale Controlling Factors of Extreme Heat-Wave Events in Southern China" Atmosphere 11, no. 6: 668. https://doi.org/10.3390/atmos11060668
APA StyleChen, W., Fu, J. -X., & Li, G. (2020). Objective Identification and Multi-Scale Controlling Factors of Extreme Heat-Wave Events in Southern China. Atmosphere, 11(6), 668. https://doi.org/10.3390/atmos11060668