Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Category | PM2.5 Concentration (µg/m3) |
---|---|
Good | 0–10 |
Fair | 10–25 |
Moderate | 20–25 |
Poor | 25–50 |
Very poor | 50–75 |
Extremely poor | >75 |
References
- European Environment Agency. Air Quality in Europe—2019 Report; European Environment Agency: Copenhagen, Danmark, 2019. [Google Scholar]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Pascal, M.; Corso, M.; Chanel, O.; Declercq, C.; Badaloni, C.; Cesaroni, G.; Henschel, S.; Meister, K.; Haluza, D.; Martin-Olmedo, P.; et al. Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project. Sci. Total Environ. 2013, 449, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Kis-Kovács, G.; Tarczay, K.; Kőbányai, K.; Ludányi, E.; Nagy, E.; Lovas, K. Informative Inventory Report 1990–2015; Unit of National Emissions Inventories: Budapest, Hungary, 2017. [Google Scholar]
- Ferenczi, Z. Predictability analysis of the PM2.5 and PM10 concentration in Budapest. Időjárás 2013, 117, 359–375. [Google Scholar]
- Ferenczi, Z.; Bozó, L. Effect of the long-range transport on the air quality of greater Budapest area. Int. J. Environ. Pollut. 2017, 62, 407–416. [Google Scholar] [CrossRef]
- Folyovich, A.; Biczo, D.; Fulop, A.; Nemeth, A.; Breuer, H.; Beres-Molnar, K.A.; Varga, V.; Vadasdi, K.; Toldi, G.; Bartholy, J. Effect of short-term changes of air pollution on the development of acute ischemic stroke. J. Neurol. Sci. 2013, 333, e196. [Google Scholar] [CrossRef]
- Vörös, K.; Kói, T.; Magyar, D.; Rudnai, P.; Páldy, A. The influence of air pollution on respiratory allergies, asthma and wheeze in childhood in Hungary. Minerva Pediatr. 2019. [Google Scholar] [CrossRef]
- Murtas, R.; Russo, A.G. Effects of pollution, low temperature and influenza syndrome on the excess mortality risk in winter 2016–2017. BMC Public Health 2019, 19, 1445. [Google Scholar] [CrossRef]
- Ferenczi, Z.; Labancz, K.; Steib, R. Development of a Numerical Prediction Model System for the Assessment of the Air Quality in Budapest. In Air Pollution Modeling and Its Application XXIII; Steyn, D., Mathur, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 401–405. [Google Scholar]
- Kovács, A.; Leelőssy, Á.; Mészáros, R.; Lagzi, I. Online coupled modelling of weather and air quality of Budapest using the WRF-Chem model. Időjárás 2019, 123, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Leelőssy, Á.; Molnár, F.; Izsák, F.; Havasi, Á.; Lagzi, I.; Mészáros, R. Dispersion modeling of air pollutants in the atmosphere: A review. Cent. Eur. J. Geosci. 2014, 6, 257–278. [Google Scholar] [CrossRef]
- Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; et al. A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmos. Chem. Phys. 2012, 12, 1–87. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Atmosphere Monitoring Service. Regional Production, Updated Documentation Covering All Regional Operational Systems and the ENSEMBLE; Copernicus Atmosphere Monitoring Service: Shinfield, UK, 2019. [Google Scholar]
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef] [Green Version]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model-technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef] [Green Version]
- Strunk, A.; Ebel, A.; Elbern, H. A nested application of four-dimensional variational assimilation of tropospheric chemical data. Int. J. Environ. Pollut. 2011, 46, 43–60. [Google Scholar] [CrossRef]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; Denier van der Gon, H.A.C.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K.E.J.; Kokkola, H. MATCH-SALSA—Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model—Part 1: Model description and evaluation. Geosci. Model Dev. 2015, 8, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Rouil, L.; Honoré, C.; Vautard, R.; Beekmann, M.; Bessagnet, B.; Malherbe, L.; Meleux, F.; Dufour, A.; Elichegaray, C.; Flaud, J.-M.; et al. Prev’air: An Operational Forecasting and Mapping System for Air Quality in Europe. Bull. Am. Meteorol. Soc. 2009, 90, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Sofiev, M.; Vira, J.; Kouznetsov, R.; Prank, M.; Soares, J.; Genikhovich, E. Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin. Geosci. Model Dev. 2015, 8, 3497–3522. [Google Scholar] [CrossRef] [Green Version]
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Pérez Camaño, J.L.; et al. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 2015, 15, 5325–5358. [Google Scholar] [CrossRef] [Green Version]
- Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P.D. Modelling of primary aerosols in the chemical transport model MOCAGE: Development and evaluation of aerosol physical parameterizations. Geosci. Model Dev. 2015, 8, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Gama, C.; Ribeiro, I.; Lange, A.C.; Vogel, A.; Ascenso, A.; Seixas, V.; Elbern, H.; Borrego, C.; Friese, E.; Monteiro, A. Performance assessment of CHIMERE and EURAD-IM’ dust modules. Atmos. Pollut. Res. 2019, 10, 1336–1346. [Google Scholar] [CrossRef]
- Sofiev, M.; Soares, J.; Prank, M.; Leeuw, G.; Kukkonen, J. A regional-to-global model of emission and transport of sea salt particles in the atmosphere. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model Dev. 2016, 9, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Prank, M.; Vira, J.; Ots, R.; Sofiev, M. Evaluation of Organic Aerosol and Its Precursors in the SILAM Model. In Proceedings of the Air Pollution Modeling and Its Application XXV, Chania, Greece, 3–7 October 2016. [Google Scholar]
- Alföldy, B.; Osán, J.; Tóth, Z.; Török, S.; Harbusch, A.; Jahn, C.; Emeis, S.; Schäfer, K. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Sci. Total Environ. 2007, 383, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Ribeiro, I.; Tchepel, O.; Carvalho, A.; Martins, H.; Sá, E.; Ferreira, J.; Martins, V.; Galmarini, S.; Miranda, A.I.; et al. Ensemble Techniques to Improve Air Quality Assessment: Focus on O3 and PM. Environ. Model. Assess. 2013, 18, 249–257. [Google Scholar] [CrossRef]
- Monteiro, A.; Ribeiro, I.; Tchepel, O.; Sá, E.; Ferreira, J.; Carvalho, A.; Martins, V.; Strunk, A.; Galmarini, S.; Elbern, H.; et al. Bias Correction Techniques to Improve Air Quality Ensemble Predictions: Focus on O3 and PM Over Portugal. Environ. Model. Assess. 2013, 18, 533–546. [Google Scholar] [CrossRef]
- Borrego, C.; Monteiro, A.; Pay, M.T.; Ribeiro, I.; Miranda, A.I.; Basart, S.; Baldasano, J.M. How bias-correction can improve air quality forecasts over Portugal. Atmos. Environ. 2011, 45, 6629–6641. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Coutinho, M.; Costa, A.M.; Ginja, J.; Ribeiro, C.; Monteiro, A.; Ribeiro, I.; Valente, J.; Amorim, J.H.; Martins, H.; et al. Challenges for a New Air Quality Directive: The role of monitoring and modelling techniques. Urban Clim. 2015, 14, 328–341. [Google Scholar] [CrossRef]
- Sofiev, M.; Ritenberga, O.; Albertini, R.; Arteta, J.; Belmonte, J.; Bernstein, C.G.; Bonini, M.; Celenk, S.; Damialis, A.; Douros, J.; et al. Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: Current status and outlook. Atmos. Chem. Phys. 2017, 17, 12341–12360. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhai, X.; Ivey, C.E.; Friberg, M.D.; Hu, X.; Liu, Y.; Di, Q.; Schwartz, J.; Mulholland, J.A.; Russell, A.G. Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: Application over North Carolina, USA. Air Qual. Atmos. Health 2018, 11, 11–22. [Google Scholar] [CrossRef]
- Friberg, M.D.; Kahn, R.A.; Holmes, H.A.; Chang, H.H.; Sarnat, S.E.; Tolbert, P.E.; Russell, A.G.; Mulholland, J.A. Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties. Atmos. Environ. 2017, 158, 36–50. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chi, W.-J.; Lin, Y.-Q. The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique. Environ. Int. 2020, 134, 105305. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, V.J.; Gelfand, A.E.; Holland, D.M. Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality. Biometrics 2012, 68, 837–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrocal, V.J.; Gelfand, A.E.; Holland, D.M. A Spatio-Temporal Downscaler for Output From Numerical Models. J. Agric. Biol. Environ. Stat. 2010, 15, 176–197. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Kelly, J.T.; Jang, C.J.; Wang, S.; Hanna, A.; Xing, J.; Lin, C.-J.; Long, S.; Yu, L. Health benefit assessment of PM2.5 reduction in Pearl River Delta region of China using a model-monitor data fusion approach. J. Environ. Manag. 2019, 233, 489–498. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, Y.; Zheng, J.; Zhai, X.; Huang, R. An optimized data fusion method and its application to improve lateral boundary conditions in winter for Pearl River Delta regional PM2.5 modeling, China. Atmos. Environ. 2018, 180, 59–68. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Pithon, M.; Joly, M.; Petiot, V.; Collin, G.; Assar, N.; Colette, A.; Akritidis, D.; Bennouna, Y.; Blechschmidt, A.-M.; Douros, J.; et al. Quarterly Report on ENSEMBLE NRT Productions (Daily Analyses and Forecasts) and Their Verification, at the Surface and above Surface, December 2018–February 2019; Météo-France: Paris, France, 2019. [Google Scholar]
- Hastings, D.A.; Dunbar, P.K. Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation. Key Geophys. Rec. Doc. 1999, 34, 1999. [Google Scholar]
- Werner, M.; Kryza, M.; Pagowski, M.; Guzikowski, J. Assimilation of PM2.5 ground base observations to two chemical schemes in WRF-Chem—The results for the winter and summer period. Atmos. Environ. 2019, 200, 178–189. [Google Scholar] [CrossRef]
- Ordieres, J.B.; Vergara, E.P.; Capuz, R.S.; Salazar, R.E. Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 2005, 20, 547–559. [Google Scholar] [CrossRef]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Di Tommaso, S.; Colangeli, C.; Rosatelli, G.; Di Carlo, P. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Zangooei, H.; Aria, S.H. Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City. Asian J. Atmos. Environ. 2016, 10, 67–79. [Google Scholar] [CrossRef] [Green Version]
- European Air Quality Index. Available online: https://airindex.eea.europa.eu (accessed on 31 May 2020).
Station | Location | Data Availability | Mean Concentration | Number of Values Above 25 µg/m3 |
Budatétény | 47.41 N 19.00 E | 4327/4392 1 | 20 µg/m3 | 1157 |
Erzsébet tér | 47.50 N 19.05 E | 1871/4392 2 | 21 µg/m3 | 621 |
Gergely utca | 47.47 N 19.14 E | 4367/4392 | 21 µg/m3 | 1333 |
Gilice tér | 47.43 N 19.18 E | 3120/4392 3 | 21 µg/m3 | 1050 |
Honvéd | 47.52 N 19.07 E | 4376/4392 | 19 µg/m3 | 1253 |
Kőrakás park | 47.54 N 19.15 E | 4389/4392 | 15 µg/m3 | 749 |
Model | Area | Data Availability | Mean Concentration | Number of Values Above 25 µg/m3 |
CHIMERE | 47.45–47.55 N 19.05–19.15 E 4 | 4392/4392 | 15 µg/m3 | 535 |
EMEP | 4368/4392 | 18 µg/m3 | 951 | |
EURAD | 4392/4392 | 16 µg/m3 | 809 | |
LOTOS-EUROS | 4392/4392 | 13 µg/m3 | 285 | |
MATCH | 4392/4392 | 12 µg/m3 | 345 | |
MOCAGE | 4392/4392 | 13 µg/m3 | 461 | |
SILAM | 4392/4392 | 24 µg/m3 | 1621 | |
ENSEMBLE | 4392/4392 | 14 µg/m3 | 523 |
Episode Days | Pattern Shift Days |
---|---|
15–20 Oct 2018 | 21 Oct 2018 |
27 Oct 2018 | |
1–3 Nov 2018 | 1 Nov 2018 |
5–13 Nov 2018 | 14 Nov 2018 |
1–4 Dec 2018 | 1 Dec 2018 |
6–8 Dec 2018 | 9 Dec 2018 |
13 Dec 2018 | |
16–22 Dec 2018 | 16 Dec 2018; 23 Dec 2018 |
7–10 Jan 2019 | 7 Jan 2019; 11 Jan 2019 |
21–25 Jan 2019 | 21 Jan 2019 |
27 Jan–1 Feb 2019 | 2 Feb 2019 |
6–10 Feb 2019 | 6 Feb 2019; 11 Feb 2019 |
15–19 Feb 2019 | 15 Feb 2019; 20 Feb 2019 |
25 Feb 2019 | |
22 Mar 2019 | |
24 Mar 2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga-Balogh, A.; Leelőssy, Á.; Lagzi, I.; Mészáros, R. Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere 2020, 11, 669. https://doi.org/10.3390/atmos11060669
Varga-Balogh A, Leelőssy Á, Lagzi I, Mészáros R. Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere. 2020; 11(6):669. https://doi.org/10.3390/atmos11060669
Chicago/Turabian StyleVarga-Balogh, Adrienn, Ádám Leelőssy, István Lagzi, and Róbert Mészáros. 2020. "Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest" Atmosphere 11, no. 6: 669. https://doi.org/10.3390/atmos11060669
APA StyleVarga-Balogh, A., Leelőssy, Á., Lagzi, I., & Mészáros, R. (2020). Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere, 11(6), 669. https://doi.org/10.3390/atmos11060669