High-Resolution Simulation of Polar Lows over Norwegian and Barents Seas Using the COSMO-CLM and ICON Models for the 2019–2020 Cold Season
Abstract
:1. Introduction
2. Methods
2.1. Geographical Area of Research
2.2. Models
- The COSMO-CLM configuration of the COSMO model: version 5.06; grid spacing 6.6 km; 40 vertical levels; computational domain (countered at the Figure 2 by the red) includes the Greenland, Norwegian, and Barents seas and parts of the Greenland, Kola Peninsula, Kara Sea, and North Pole area. Further in the text, we will refer to it as “COSMO-CLM-A6.6”.
- The configuration of the ICON model for a limited area: grid spacing 6.5 km; 65 vertical levels; domain (countered at the Figure 2 by the blue) covers the circle around the North Pole to 60° N and includes all Arctic ocean seas, Greenland, and the Arctic coasts of the continents. Further in this text, we will refer to it as “ICON-A6.5”.
- The configuration of the ICON model for a limited area (nested into ICON-A6.5): grid spacing 2.0 km, 65 vertical levels, domain (countered at Figure 2 by the green) covers part of the domain ICON-A6.5 close to the Europe. Further in this text, we will refer to it as “ICON-A2”.
2.3. Experiments
- What were the differences between the results of the two modeling systems for CLM community used here based on the COSMO or ICON models? How does the accuracy of PL modelling in both systems decrease with an increasing lead time?
- What is the modelling accuracy of PL?
- What is the sensitivity resolution of the modelled PL? Is there a particular feature in convection permitting higher-resolution models?
2.4. Verification Data
3. Results
3.1. Comparison of PL Modellling Skill based on COSMO-CLM and ICON
3.1.1. Case of PL of 26–27 November 2019
3.1.2. Case of PL of 20 March 2020
3.1.3. Case of PL of 24–27 February 2020
3.2. Modelling of PLs with Increasing Model Resolution
3.2.1. Case of Polar Low of 26–27 November 2019
3.2.2. Case of the Polar Low of 24–26 February 2020
3.2.3. Case of PL of 19–20.03.2020
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Heinemann, G.; Saetra, Ø. Workshop on polar lows. BAMS 2013, 94, ES123–ES126. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, E.A.; Turner, J. Polar Lows: Mesoscale Weather Systems in the Polar Regions; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef] [Green Version]
- Harold, J.M.; Bigg, G.R.; Turner, J. Mesocyclone Acticity over the North-East Atlantic. Part 1: Vortex distribution and variability. Int. J. Climatol. 1999, 19, 1187–1204. [Google Scholar] [CrossRef]
- Wilhelmsen, K. Climatological study of gale-producing polar lows near Norway. Tellus A 1985, 37, 451–459. [Google Scholar] [CrossRef]
- Lutsenko, E.I.; Lagun, V.E. Polar Mesoscale Cyclonic Eddies in the Arctic Atmosphere; Arctic and Antarctic Research Institute: St. Petersburg, Russia, 2010. [Google Scholar]
- Mokhov, I.I.; Akperov, M.G.; Lagun, V.E.; Lutsenko, E.I. Intense arctic mesocyclones. Izv. Atmos. Ocean. Phys. 2007, 43, 259–265. [Google Scholar] [CrossRef]
- Smirnova, J.E.; Golubkin, P.A.; Bobylev, L.P.; Zabolotskikh, E.V.; Chapron, B. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data. Geophys. Res. Lett. 2015, 42, 5603–5609. [Google Scholar] [CrossRef] [Green Version]
- Stoll, P.; Graversen, R.G.; Noer, G.; Hodges, K. An objective global climatology of polar lows based on reanalysis data. Q. J. R. Meteorol. Soc. 2018, 144, 2099–2117. [Google Scholar] [CrossRef] [Green Version]
- Terpstra, A.; Michel, C.; Spengler, T. Forward and Reverse Shear Environments during Polar Low Genesis over the Northeast Atlantic. Mon. Weather Rev. 2016, 144, 1341–1354. [Google Scholar] [CrossRef]
- Gavrikov, A.; Gulev, S.; Markina, M.; Tilinina, N.; Verezemskaya, P.; Barnier, B.; Dufour, B.; Zolina, O.; Zyulyaeva, J.; Krinitskiy, M.; et al. RAS-NAAD: 40-yr High-Resolution North Atlantic Atmospheric Hindcast for Multipurpose Applications (New Dataset for the Regional Mesoscale Studies in the Atmosphere and the Ocean). JAMC 2020, 59, 793–817. [Google Scholar] [CrossRef]
- Laffineur, T.; Claud, C.; Chaboureau, J.-P.; Noer, G. Polar lows over the Nordic Seas: Improved Representation in ERA-Interim Compared to ERA-40 and the Impact on Downscaled Simulations. Mon. Weather Rev. 2014, 142, 2271–2289. [Google Scholar] [CrossRef]
- Michel, C.; Terpstra, A.; Spengler, T. Polar Mesoscale Cyclone Climatology for the Nordic Seas Based on ERA-Interim. J. Clim. 2017, 31, 2511–2532. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Wilson, A.B.; Bai, L.-S.; Moore, G.W.K.; Bauer, P. A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Q. J. R. Meteorol. Soc. 2016, 142, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Krinitskiy, M.; Verezemskaya, P.; Grashchenkov, K.; Tilinina, N.; Gulev, S.; Lazzara, M. Deep Convolutional Neural Networks Capabilities for Binary Classification of Polar Mesocyclones in Satellite Mosaics. Atmosphere 2018, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Varentsov, M.I.; Verezemskaya, P.S.; Zabolotskikh, E.V.; Repina, I.A. Evaluation of the quality of polar low reconstruction using reanalysis and regional climate modeling. Mod. Probl. Remote Sens. Earth Space 2016, 13, 168–191. [Google Scholar] [CrossRef]
- Kristiansen, J.; Sørland, S.L.; Iversen, T.; Bjørge, D.; Køltzow, M.Ø. High-resolution ensemble prediction of a polar low development. Tellus A 2011, 63, 585–604. [Google Scholar] [CrossRef] [Green Version]
- Pagowski, M.; Moore, G.W.K. A Numerical Study of an Extreme Cold-Air Outbreak over the Labrador Sea: Sea Ice, Air–Sea Interaction, and Development of Polar Lows. Mon. Weather Rev. 2001, 129, 47–72. [Google Scholar] [CrossRef]
- Mailhot, J.; Hanley, D.; Bilodeau, B.; Hertzman, O. A numerical case study of a polar low in the Labrador Sea. Tellus A 1996, 48, 383–402. [Google Scholar] [CrossRef]
- GrønÁs, S.; Foss, A.; Lystad, M. Numerical simulations of polar lows in the Norwegian Sea. Tellus A 1987, 39, 334–353. [Google Scholar] [CrossRef] [Green Version]
- Sergeev, D.E.; Renfrew, I.A.; Spengler, T.; Dorling, S.R. Structure of a shear-line polar low. Q. J. R. Meteorol. Soc. 2017, 143, 12–26. [Google Scholar] [CrossRef]
- Føre, I.; Kristjánsson, J.E.; Saetra, Ø.; Breivik, Ø.; Røsting, B.; Shapiro, M. The full life cycle of a polar low over the Norwegian Sea observed by three research aircraft flights. Q. J. R. Meteorol. Soc. 2011, 137, 1659–1673. [Google Scholar] [CrossRef]
- Wagner, J.S.; Gohm, A.; Dörnbrack, A.; Schäfler, A. The mesoscale structure of a polar low: Airborne lidar measurements and simulations. Q. J. R. Meteorol. Soc. 2011, 137, 1516–1531. [Google Scholar] [CrossRef] [Green Version]
- Føre, I.; Nordeng, T.E. A polar low observed over the Norwegian Sea on 3–4 March 2008: High-resolution numerical experiments. Q. J. R. Meteorol. Soc. 2012, 138, 1983–1998. [Google Scholar] [CrossRef] [Green Version]
- Innes, H.M.; Kristiansen, J.; Kristjánsson, J.E.; Schyberg, H. The role of horizontal resolution for polar low simulations. Q. J. R. Meteorol. Soc. 2011, 137, 1674–1687. [Google Scholar] [CrossRef]
- Stoll, P.J.; Valkonen, T.M.; Graversen, R.G.; Noer, G. A well-observed polar low analyzed with a regional and a global weather-prediction model. Q. J. R. Meteorol. Soc. 2020, 146, 1740–1767. [Google Scholar] [CrossRef]
- Køltzow, M.; Casati, B.; Bazile, E.; Haiden, T.; Valkonen, T. An NWP model intercomparison of surface weather parameters in the European Arctic during the year of polar prediction Special Observing Period Northern Hemisphere 1. Weather Forecast. 2019, 43, 959–983. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Bracegirdle, T.J. Sensitivity of an apparently hurricane-like polar low to sea-surface temperature. Q. J. R. Meteorol. Soc. 2017, 143, 966–973. [Google Scholar] [CrossRef]
- Nikitin, M.A.; Rivin, G.S.; Rozinkina, I.A.; Chumakov, M.M. Identification of polar cyclones above the Kara Sea waters using hydrodynamic modelling. Vesti Gazov. Nauki 2015, 22, 106–112. (In Russian) [Google Scholar]
- Nikitin, M.A.; Rivin, G.S.; Rozinkina, I.A.; Chumakov, M.M. Use of COSMO-Ru forecasting system for polar low’s research: Case study 25–27 March 2014. Proc. Hydrometcentre Russ. 2016, 361, 128–145. (In Russian) [Google Scholar]
- Sergeev, D.; Renfrew, I.A.; Spengler, T. Modification of Polar Low Development by Orography and Sea Ice. Mon. Weather Rev. 2018, 146, 3325–3341. [Google Scholar] [CrossRef]
- Rivin, G.; Nikitin, M.; Chumakov, M.; Blinov, D.; Rozinkina, I. Numerical Weather Prediction for Arctic Region. Geophys. Res. Abstr. 2018, 20, EGU2018–EGU5505. [Google Scholar]
- Polezhayeva, A. Numerical modeling of polar lows over the Barents sea: Impact of WRF parametrizations on the quality of forecast. In Proceedings of the XXVI International Coastal Conference “Managinag Risks to Coastal Regions and Communities in a Changing World”, St Petersburg, Russia, 22–27 August 2016. [Google Scholar] [CrossRef]
- Figa-Saldaña, J.; Wilson, J.J.W.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Zäangl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. The ICON (ICOsahedral Non- hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. Roy. Meteor. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Mironov, D.; Ritter, B.; Schulz, J.-P.; Buchhold, M.; Lange, M.; Machulskaya, E. Parameterisation of sea and lake ice in numerical weather prediction models of the German weather service. Tellus A 2012, 64, 17330. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, M.A.; Rivin, G.S.; Chumakov, M.M. Influence of space-time variations in sea surface temperature on the evolution of polar cyclones. Mod. Approaches Adv. Technol. Proj. Dev. Oil Gas Fields Russ. Shelf 2018, 4, 209–217. [Google Scholar]
- Torrisi, L.; Mironov, D. Progress of Cosmo in 2019. Available online: https://cosmo.io/uploads/cosmo_sustainability_report_2019.pdf (accessed on 22 January 2021).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Verhoef, A.; Vogelzang, J.; Stoffelen, A. ASCAT L2 Winds Data Record Validation Report, Technical Note, version 1.2.; KNMI: De Bilt, The Netherlands, 2016; p. 20. [Google Scholar] [CrossRef]
Stations | Lead Time 24 h, Forecast Started at 00 UTC 20.03.2020 | Lead Time 48 h, Forecast Started at 00 UTC 19.03.2020 | ||
---|---|---|---|---|
Arctic-A2 | Arctic-A6.5 | Arctic-A2 | Arctic-A6.5 | |
RMSE | RMSE | RMSE | RMSE | |
Röst, 20 March 2020 | 2.09 | 2.02 | 2.36 | 1.92 |
Scrova, 20 March 2020 | 2.16 | 2.17 | 2.15 | 2.26 |
Stokmarknes, 20 March 2020 | 2.13 | 1.70 | 2.03 | 2.50 |
Honningsvåg, 26 November 2019 | 2.09 | 2.30 | 2.51 | 2.53 |
Mean RMSE | 2.12 | 2.05 | 2.26 | 2.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revokatova, A.; Nikitin, M.; Rivin, G.; Rozinkina, I.; Nikitin, A.; Tatarinovich, E. High-Resolution Simulation of Polar Lows over Norwegian and Barents Seas Using the COSMO-CLM and ICON Models for the 2019–2020 Cold Season. Atmosphere 2021, 12, 137. https://doi.org/10.3390/atmos12020137
Revokatova A, Nikitin M, Rivin G, Rozinkina I, Nikitin A, Tatarinovich E. High-Resolution Simulation of Polar Lows over Norwegian and Barents Seas Using the COSMO-CLM and ICON Models for the 2019–2020 Cold Season. Atmosphere. 2021; 12(2):137. https://doi.org/10.3390/atmos12020137
Chicago/Turabian StyleRevokatova, Anastasia, Michail Nikitin, Gdaliy Rivin, Inna Rozinkina, Andrei Nikitin, and Ekaterina Tatarinovich. 2021. "High-Resolution Simulation of Polar Lows over Norwegian and Barents Seas Using the COSMO-CLM and ICON Models for the 2019–2020 Cold Season" Atmosphere 12, no. 2: 137. https://doi.org/10.3390/atmos12020137
APA StyleRevokatova, A., Nikitin, M., Rivin, G., Rozinkina, I., Nikitin, A., & Tatarinovich, E. (2021). High-Resolution Simulation of Polar Lows over Norwegian and Barents Seas Using the COSMO-CLM and ICON Models for the 2019–2020 Cold Season. Atmosphere, 12(2), 137. https://doi.org/10.3390/atmos12020137