Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results and Discussion
3.1. Precipitation of Northern Parts of Indonesia Based on ERA-Interim
3.2. Precipitation Variability over Northern Parts of Sumatra Island
3.3. Moisture Budget Analysis
3.3.1. The Dry Years
3.3.2. The Wet Years
3.4. Velocity Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.-Y.; Jhun, J.-G.; Yim, S.-Y.; Kim, W.-M. Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Niño–Southern Oscillation connections. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Ramage, C.S. Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Weather Rev. 1968, 96, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Aldrian, E.; Dwi Susanto, R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- As-syakur, A.R.; Adnyana, I.W.S.; Mahendra, M.S.; Arthana, I.W.; Merit, I.N.; Kasa, I.W.; Ekayanti, N.W.; Nuarsa, I.W.; Sunarta, I.N. Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol. 2014, 34, 3825–3839. [Google Scholar] [CrossRef]
- Aldrian, E.; Dümenil Gates, L.; Widodo, F.H. Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theor. Appl. Climatol. 2006, 87, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Haylock, M.; McBride, J. Spatial Coherence and Predictability of Indonesian Wet Season Rainfall. J. Clim. 2001, 14, 3882–3887. [Google Scholar] [CrossRef]
- Qian, J.-H.; Robertson, A.W.; Moron, V. Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. J. Atmos. Sci. 2010, 67, 3509–3524. [Google Scholar] [CrossRef]
- Aldrian, E.; Djamil, Y.S. Spatio-temporal climatic change of rainfall in East Java Indonesia. Int. J. Climatol. 2008, 28, 435–448. [Google Scholar] [CrossRef]
- Siswanto; van der Schrier, G.; Jan van Oldenborgh, G.; van den Hurk, B.; Aldrian, E.; Swarinoto, Y.; Sulistya, W.; Eka Sakya, A. A very unusual precipitation event associated with the 2015 floods in Jakarta: An analysis of the meteorological factors. Weather Clim. Extrem. 2017, 16, 23–28. [Google Scholar] [CrossRef]
- As-syakur, A.R.; Tanaka, T.; Osawa, T.; Mahendra, M.S. Indonesian rainfall variability observation using TRMM multi-satellite data. Int. J. Remote Sens. 2013, 34, 7723–7738. [Google Scholar] [CrossRef]
- Kumar, K.K.; Rajagopalan, B.; Hoerling, M.; Bates, G.; Bates, G.; Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 2006, 314, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfahmi, F.; Boer, R.; Hidayat, R.; Perdinan; Sopaheluwakan, A. The Impact of Concave Coastline on Rainfall Offshore Distribution over Indonesian Maritime Continent. Sci. World J. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BNPB Disaster Database in Indonesia. Available online: http://bnpb.cloud/dibi/tabel1 (accessed on 19 November 2019).
- Susilo, G.E.; Yamamoto, K.; Imai, T.; Ishii, Y.; Fukami, H.; Sekine, M. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrol. Sci. J. 2013, 58, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Rahim, A.; Hidayati, R.F.; Akhmad, F.; Mamenun, M. Model Prediction Analysis of Rainy Season onset in South Sulawesi. Meteorol. Geophys. J. 2015, 12, 65–75. [Google Scholar]
- Harijono, S.W.B. The Indian Summer Monsson Contribution to the JJA Rainfall over the Northern Part of Sumatra during the co-occuring El-Nino and Dipole Mode (+) Years. Int. J. Remote Sens. Earth Sci. 2007, 4, 18–24. [Google Scholar]
- Nicholls, N. All-India Summer Monsoon Rainfall and Sea Surface Temperatures around Northern Australia and Indonesia. J. Clim. 1995, 8, 1463–1467. [Google Scholar] [CrossRef]
- Soman, M.K.; Slingo, J. Sensitivity of the asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical pacific ocean. Q. J. R. Meteorol. Soc. 1997, 123, 309–336. [Google Scholar] [CrossRef]
- Webster, P.J.; Magaña, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Ocean. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Wang, B.; Yim, S.-Y.; Lee, J.-Y.; Liu, J.; Ha, K.-J. Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim. Dyn. 2013, 42, 83–100. [Google Scholar] [CrossRef]
- Ju, J.; Slingo, J. The Asian summer monsoon and ENSO. Q. J. R. Meteorol. Soc. 1995, 121, 1133–1168. [Google Scholar] [CrossRef]
- Akbar, K. Analysis of Seasonal Rainfall Pattern and Frequency of the Extreme Rainfall relate to the Rainfall Control Anomalies in Aceh Province. Master’s Thesis, Physics Department, Unsyiah University, Banda Aceh, Indonesia, 2014. [Google Scholar]
- Liebmann, B.; Hendon, H.H. Synoptic-Scale Disturbances near the Equator. J. Atmos. Sci. 1990, 47, 1463–1479. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.C.; McBride, J.L. Australian-Indonesian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Lau, W.K.M., Waliser, D.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 125–173. [Google Scholar]
- Wang, B.; Wu, R.; Li, T. Atmosphere–Warm Ocean Interaction and Its Impacts on Asian–Australian Monsoon Variation. J. Clim. 2003, 16, 1195–1211. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.-M.; Wang, B. Evaluation of NESMv3 and CMIP5 Models’ Performance on Simulation of Asian-Australian Monsoon. Atmosphere 2018, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-R.; Ha, K.-J.; Moon, S.; Oh, H.; Sharma, S. Impact of the Indo-Pacific Warm Pool on the Hadley, Walker, and Monsoon Circulations. Atmosphere 2020, 11, 1030. [Google Scholar] [CrossRef]
- Jin, F.; Kitoh, A.; Alpert, P. Climatological relationships among the moisture budget components and rainfall amounts over the Mediterranean based on a super-high-resolution climate model. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Portis, D.H.; Lamb, P.J.; Zangvil, A. Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007). J. Hydrometeorol. 2012, 13, 1719–1738. [Google Scholar]
- Hsu, P.-C.; Li, T.; Murakami, H.; Kitoh, A. Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 1247–1260. [Google Scholar] [CrossRef]
- Kiranmayi, L.; Maloney, E.D. Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Barros, A.P. Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim. Dyn. 2013, 41, 613–631. [Google Scholar] [CrossRef]
- Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. Estimation of Continental Precipitation Recycling. J. Clim. 1993, 6, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Duan, A.; Yang, S.; Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 614–630. [Google Scholar] [CrossRef]
- Wyrtki, K. Physical Oceanography of the Southeast Asian Waters; Scripps Institution of Oceanography: San Diego, CA, USA, 1961; p. 195. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-Y.; Aryastana, P.; Liu, G.-R.; Huang, W.-R. Assessment of satellite precipitation product estimates over Bali Island. Atmos. Res. 2020, 244, 105032. [Google Scholar] [CrossRef]
- NOAA, PSL. Sea Level Pressure (SLP). Available online: https://psl.noaa.gov/ (accessed on 19 January 2021).
- Hunter, L.M.; Murray, S.; Riosmena, F. Rainfall Patterns and U.S. Migration from Rural Mexico. Int. Migr. Rev. 2013, 47, 874–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.; Neelin, J.D.; Chen, C.-A.; Tu, J.-Y. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. J. Clim. W4 2009, 22, 1982–2005. [Google Scholar] [CrossRef]
- Jongaramrungruang, S.; Seo, H.; Ummenhofer, C.C. Intraseasonal rainfall variability in the Bay of Bengal during the Summer Monsoon: Coupling with the ocean and modulation by the Indian Ocean Dipole. Atmos. Sci. Lett. 2017, 18, 88–95. [Google Scholar] [CrossRef]
- Liu, H.-W.; Yu, J.-Y.; Chen, C.-A. Changes of tropical precipitation and convective structure under global warming projected by CMIP5 model simulations. Terr. Atmos. Ocean. Sci. 2018, 29, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.; Kunz, A.; Hurst, D.F.; Rolf, C.; Krämer, M.; Riese, M. The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage. Earths Future 2016, 4, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Gleixner, S.; Demissie, T.; Diro, G.T. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa? Atmosphere 2020, 11, 996. [Google Scholar] [CrossRef]
- Gao, L.; Bernhardt, M.; Schulz, K. Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol. Earth Syst. Sci. 2012, 16, 4661–4673. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Guan, Z.; Yang, H.; Xu, Q. East Asian-Australian Monsoon Variations and Their Impacts on Regional Climate during Boreal Summer. J. Meteorol. Soc. Jpn. Ser. II 2020, 98, 283–297. [Google Scholar] [CrossRef]
- Chung, P.-H.; Sui, C.-H.; Li, T. Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wen, Z.; Wu, R.; Lin, X.; Wang, J. Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Clim. Dyn. 2015, 46, 1027–1041. [Google Scholar] [CrossRef]
- Jiang, L.; Li, T. Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Clim. Dyn. 2017, 51, 1465–1483. [Google Scholar] [CrossRef]
- Grabowski, W.W.; Moncrieff, M.W. Moisture–Convection feedback in the tropics. Q. J. R. Meteorol. Soc. 2004, 130, 3081–3104. [Google Scholar] [CrossRef]
- Li, T.; Chen, M.; Shen, X.; Wu, B. Relative Roles of Dynamic and Thermodynamic Processes in Causing Evolution Asymmetry between El Niño and La Niña*. J. Clim. 2016, 29, 2201–2220. [Google Scholar]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled ocean–Atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 1999, 401, 356. [Google Scholar] [CrossRef]
- Sohn, B.J.; Yeh, S.-W.; Schmetz, J.; Song, H.-J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim. Dyn. 2012, 40, 1721–1732. [Google Scholar] [CrossRef] [Green Version]
Climatology (JJA) | Precipitation Anomaly (JJA) | Vertical Velocity Anomaly (JJA) |
---|---|---|
Descending zone | P’ < 0 (Dry Year) | < 0 (strengthening of descent) |
P’ > 0 (Wet Year) | > 0 (weakening of descent) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmawan, Y.; Hsu, H.-H.; Yu, J.-Y. Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer. Atmosphere 2021, 12, 136. https://doi.org/10.3390/atmos12020136
Darmawan Y, Hsu H-H, Yu J-Y. Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer. Atmosphere. 2021; 12(2):136. https://doi.org/10.3390/atmos12020136
Chicago/Turabian StyleDarmawan, Yahya, Huang-Hsiung Hsu, and Jia-Yuh Yu. 2021. "Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer" Atmosphere 12, no. 2: 136. https://doi.org/10.3390/atmos12020136
APA StyleDarmawan, Y., Hsu, H. -H., & Yu, J. -Y. (2021). Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer. Atmosphere, 12(2), 136. https://doi.org/10.3390/atmos12020136