Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019
Abstract
:1. Introduction
2. Data and Analysis Methods
2.1. COSMIC Vertical Profiles
2.2. Regional Climate Characteristics
3. Results
3.1. COSMIC Moisture and Temperature Observations and Annual Features
3.2. Regional Analysis
3.2.1. 500 hPa Geopotential Heights and 1000–500 hPa Thickness
3.2.2. Sea Level Heights
3.2.3. Sea Surface Temperatures
3.2.4. Statistics—Linear Regression
3.2.5. Atmospheric Rivers and Precipitation
4. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Kuo, Y.-H.; Wee, T.-K.; Ma, Z.; Taylor, G.H.; Dettinger, M.D. Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and off-shore vertical structure observed with COSMIC satellite retrievals. Mon. Weather Rev. 2008, 136, 4398–4420. [Google Scholar] [CrossRef] [Green Version]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Dettinger, M.D. Atmospheric rivers as drought busters on the US West coast. J. Hydrometeorol. 2013, 14, 1721–1732. [Google Scholar] [CrossRef]
- Dettinger, M.D. Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. JAWRA 2011, 47, 514–523. [Google Scholar] [CrossRef]
- Anthes, R.; Rocken, C.; Kuo, Y.-H. Applications of COSMIC to meteorology and climate. Terr. Atmos. Ocean. Sci. 2001, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, K. Climate change detection with the global GPS information system. Environ. Sci. DEStech Trans. Eng. Technol. Res. 2017. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Guillemot, C.J. Physical processes involved in the 1988 drought and 1993 floods in North America. J. Clim. 1996, 9, 1288–1298. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Leung, L. Response of landfalling atmospheric rivers on the U.S. West Coast to local sea surface temperature perturbations. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T. Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett. 1998, 25, 3367–3370. [Google Scholar] [CrossRef] [Green Version]
- Koutavas, A.; DeMenocal, P.B.; Olive, G.C.; Lynch-Stieglitz, J. Mid-Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 2006, 34, 993–996. [Google Scholar] [CrossRef]
- Stott, L.; Cannariato, K.; Thunell, R.; Haug, G.H.; Koutavas, A.; Lund, S. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 2004, 431, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Barron, J.A.; Heusser, L.; Herbert, T.; Lyle, M. High-resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography 2003, 18, 1–14. [Google Scholar] [CrossRef]
- NOAA US Department of Commerce. What Is ENSO? Available online: https://www.weather.gov/mhx/ensowhat (accessed on 20 November 2020).
- Penduff, T.; Llovel, W.; Close, S.; Garcia-Gomez, I.; Leroux, S. Trends of coastal sea level between 1993 and 2015: Imprints of atmospheric forcing and oceanic chaos. Surv. Geophys. 2019. [Google Scholar] [CrossRef]
- Atmospheric Profiles from COSMIC Occultation Data; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2013. Available online: https://rda.ucar.edu/datasets/ds723.0/ (accessed on 2 March 2020).
- Ho, S.-P.; Anthes, R.A.; Ao, C.O.; Healy, S.; Horanyi, A.; Hunt, D.; Mannucci, A.J.; Pedatella, N.; Randel, W.; Simmons, A.; et al. The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Am. Meteorol. Soc. 2019. [Google Scholar] [CrossRef] [Green Version]
- Constellation Observing System for Meteorology Ionosphere & Climate (COSMIC). Available online: https://www.nasa.gov/directorates/heo/scan/services/missions/earth/COSMIC.html (accessed on 10 April 2020).
- UCAR Community Programs Global Navigation Satellite System Radio Occultation (GSNN_RO). Available online: https://www.cosmic.ucar.edu/what-we-do/gnss-radio-occultation/ (accessed on 16 March 2020).
- COSMIC Data Analysis and Archive Center (CDAAC). Available online: https://cdaac-www.cosmic.ucar.edu/cdaac/products.html (accessed on 10 February 2020).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef] [Green Version]
- GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1); NASA JPL: Pasadena, CA, USA, 2015. [CrossRef]
- Meteorological and Oceanographic Data Collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and Moored (Weather) Buoys; NOAA National Centers for Environmental Information: Boulder, CO, USA, 1971. Available online: https://ndbc.noaa.gov (accessed on 17 July 2020).
- JPL MEASURES Gridded Sea Surface Height Anomalies Version 1812; NASA JPL: Pasadena, CA, USA, 2019. [CrossRef]
- Cold and Warm Episodes by Season; National Weather Service: Silver Spring, MD, USA, 2020. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 29 September 2020).
- Null, J. El Niño and La Niña Years and Intensities. Available online: https://ggweather.com/enso/oni.htm (accessed on 29 December 2020).
- Advanced Hydrologic Prediction Center. About the Precipitation Analysis Pages. Available online: https://water.weather.gov/precip/about.php. (accessed on 22 November 2020).
- Phillips, B.; Leslie, J. International Report Confirms 2016 Was the Warmest Year on Record for the Globe. Available online: https://www.noaa.gov/news/international-report-confirms-2016-was-warmest-year-on-record-for-globe (accessed on 13 September 2020).
- Swain, D.L. A tale of two California droughts: Lessons amidst record warmth and dryness in a region of complex physical and human geography. Geophys. Res. Lett. 2015, 42, 9999–10003. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Hipps, L.; Gillies, R.R.; Yoon, J.-H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 2014, 41, 3220–3226. [Google Scholar] [CrossRef] [Green Version]
- Widlansky, M.J.; Long, X.; Schloesser, F. Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater. Commun. Earth Environ. 2020, 1, 9. [Google Scholar] [CrossRef]
- Patricola, C.M.; O’Brien, J.P.; Risser, M.D.; Rhoades, A.M.; O’Brien, T.A.; Ullrick, P.A.; Stone, D.A.; Collins, W.D. Maximizing ENSO as a source of western US hydroclimate predictability. Clim. Dyn. 2019, 54, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Quan, X.-W.; Hoerling, M.; Smith, L.; Perlwitz, J.; Zhang, T.; Hoell, A.; Wolter, K.; Eischeid, J. Extreme California rains during winter 2015/16: A change in El Niño teleconnection? Bull. Am. Meteorol. Soc. 2018, 99, S49–S53. [Google Scholar] [CrossRef] [Green Version]
- Hecht, C.W.; Kawenuk, B.; Ralph, F.M. How Many Atmospheric Rivers Have Hit the U.S. West Coast During the Remarkably Wet Water Year 2017? Available online: https://cw3e.ucsd.edu/water-year-2019-december-atmospheric-rivers (accessed on 16 October 2020).
- Hecht, C.W.; Ralph, F.M. Distribution of Landfalling Atmospheric Rivers over the U.S. West Coast during Water Year 2018: October through March Update. Available online: https://cw3e.ucsd.edu/distribution-of-landfalling-atmospheric-rivers-on-the-u-s-west-coast-during-water-year-2018/ (accessed on 16 October 2020).
- Hecht, C.W.; Ralph, F.M. Distribution of Landfalling Atmospheric Rivers over the U.S. West Coast during Water Year 2020: October through March Update. Available online: https://cw3e.ucsd.edu/distribution-of-landfalling-atmospheric-rivers-over-the-u-s-west-coast-during-water-year-2020-october-through-march-update/ (accessed on 16 October 2020).
- NOAA Online Weather Data—Accumulated Precipitation; National Weather Service: Silver Spring, MD, USA. Available online: https://w2.weather.gov/climate/xmacis.php?wfo=mtr (accessed on 19 August 2020).
(a) | ||||
SON: 500 mb Geopotential Height Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006 | 1.18 | −0.35 | 0.92 | −0.11 |
2007 | 0.23 | −0.50 | 1.21 | −0.04 |
2008 | 1.46 | 3.37 | 1.40 | 2.00 |
2009 | −3.97 | −1.51 | −0.02 | 0.34 |
2010 | −3.29 | −1.87 | −0.35 | −0.20 |
2011 | −2.70 | −1.34 | 0.36 | 0.12 |
2012 | −0.91 | 0.70 | −1.59 | 0.10 |
2013 | 3.20 | 1.26 | 0.57 | −0.44 |
2014 | −1.41 | 1.15 | −1.29 | 1.40 |
2015 | 0.93 | 0.57 | 0.88 | 0.19 |
2016 | −6.66 | −3.98 | −1.97 | −0.09 |
2017 | 0.12 | −0.28 | 0.27 | 1.18 |
2018 | 2.43 | 1.84 | 0.70 | 1.09 |
(b) | ||||
DJF: 500 mb Geopotential Height Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006–2007 | 1.04 | 2.04 | 2.65 | 1.53 |
2007–2008 | 0.95 | −2.10 | 3.32 | 0.57 |
2008–2009 | 5.71 | 1.68 | 2.60 | 0.53 |
2009–2010 | −5.93 | −2.36 | −5.95 | −3.65 |
2010–2011 | −0.50 | −1.41 | 0.71 | 0.05 |
2011–2012 | 5.25 | 4.63 | 5.39 | 3.52 |
2012–2013 | 4.12 | 0.88 | 3.59 | 0.01 |
2013–2014 | 8.04 | 5.55 | 5.19 | 4.94 |
2014–2015 | 5.22 | 7.55 | 2.23 | 4.64 |
2015–2016 | −5.40 | −1.13 | −0.49 | 1.84 |
2016–2017 | −3.78 | −5.67 | −2.03 | −2.00 |
2017–2018 | 7.05 | 5.31 | 5.37 | 5.08 |
2018–2019 | −0.71 | −3.30 | −1.40 | −2.17 |
(c) | ||||
SON: 1000–500 hPa Thickness Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006 | 0.16 | −0.23 | 0.42 | −0.26 |
2007 | −0.83 | −1.27 | 0.51 | −0.33 |
2008 | 1.00 | 2.07 | 1.08 | 1.53 |
2009 | −1.86 | −0.77 | −0.04 | 0.46 |
2010 | −2.07 | −1.45 | −0.75 | −0.64 |
2011 | −1.99 | −1.08 | −0.01 | −0.11 |
2012 | −0.54 | 0.91 | −1.02 | −0.12 |
2013 | 1.78 | 0.81 | 0.71 | −0.15 |
2014 | 1.78 | 2.68 | 1.34 | 2.40 |
2015 | 0.46 | 0.68 | 0.86 | 0.54 |
2016 | −2.78 | −1.75 | −1.10 | −0.10 |
2017 | 0.22 | 0.46 | 0.71 | 1.60 |
2018 | 1.86 | 1.34 | 0.71 | 1.30 |
(d) | ||||
DJF: 1000–500 hPa Thickness Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006–2007 | −0.16 | 0.38 | −0.14 | −0.53 |
2007–2008 | −0.47 | −1.98 | 0.99 | −0.24 |
2008–2009 | 1.77 | 0.20 | 0.65 | 0.15 |
2009–2010 | 0.73 | 1.02 | −0.49 | −0.55 |
2010–2011 | −1.17 | −1.25 | 0.06 | 0.32 |
2011–2012 | 1.40 | 1.53 | 1.61 | 1.32 |
2012–2013 | 0.09 | −1.10 | −0.70 | −1.80 |
2013–2014 | 4.09 | 2.63 | 3.60 | 4.07 |
2014–2015 | 5.50 | 6.43 | 3.95 | 5.00 |
2015–2016 | −0.81 | 0.60 | 0.54 | 1.49 |
2016–2017 | −4.07 | −4.09 | −0.59 | −0.69 |
2017–2018 | 2.72 | 2.17 | 2.76 | 3.39 |
2018–2019 | −0.64 | −1.79 | −0.66 | −1.11 |
(a) | ||||
SON: Sea Level Height Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006 | 0.035 | 0.011 | 0.005 | −0.002 |
2007 | 0.035 | 0.017 | 0.047 | 0.010 |
2008 | 0.039 | 0.021 | 0.059 | 0.016 |
2009 | 0.059 | 0.034 | 0.054 | 0.027 |
2010 | 0.029 | 0.021 | 0.030 | 0.016 |
2011 | −0.015 | 0.017 | 0.016 | 0.002 |
2012 | 0.030 | 0.011 | 0.023 | 0.016 |
2013 | 0.058 | 0.028 | 0.044 | 0.021 |
2014 | 0.096 | 0.078 | 0.077 | 0.070 |
2015 | 0.134 | 0.106 | 0.097 | 0.105 |
2016 | 0.078 | 0.041 | 0.087 | 0.083 |
2017 | 0.041 | 0.047 | 0.042 | 0.036 |
2018 | 0.090 | 0.062 | 0.052 | 0.040 |
(b) | ||||
DJF: Sea Level Height Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006–2007 | −0.008 | −0.027 | −0.013 | −0.020 |
2007–2008 | −0.008 | −0.038 | 0.013 | −0.033 |
2008–2009 | −0.004 | −0.031 | 0.003 | −0.027 |
2009–2010 | −0.011 | −0.006 | 0.010 | 0.004 |
2010–2011 | −0.041 | −0.037 | −0.022 | −0.024 |
2011–2012 | −0.032 | −0.024 | −0.022 | −0.036 |
2012–2013 | −0.021 | −0.030 | −0.012 | −0.015 |
2013–2014 | 0.038 | −0.006 | 0.009 | −0.017 |
2014–2015 | 0.043 | 0.066 | 0.044 | 0.064 |
2015–2016 | 0.046 | 0.046 | 0.068 | 0.084 |
2016–2017 | −0.024 | −0.011 | 0.019 | 0.020 |
2017–2018 | −0.000 | 0.007 | 0.003 | 0.009 |
2018–2019 | 0.026 | 0.026 | 0.021 | 0.013 |
SLH (m) | ||||
---|---|---|---|---|
Year | SON | DJF | Mean | % Change (m/year) |
2006 | 0.012 | −0.017 | −0.002 | - |
2007 | 0.027 | −0.017 | 0.005 | 326.3 |
2008 | 0.034 | −0.015 | 0.010 | 76.7 |
2009 | 0.044 | −0.001 | 0.021 | 125.0 |
2010 | 0.024 | −0.031 | −0.004 | −116.4 |
2011 | 0.005 | −0.021 | −0.008 | −125.0 |
2012 | 0.020 | −0.020 | 0.000 | 103.2 |
2013 | 0.038 | 0.006 | 0.022 | 8650.0 |
2014 | 0.080 | 0.054 | 0.067 | 207.4 |
2015 | 0.111 | 0.061 | 0.086 | 27.5 |
2016 | 0.072 | 0.001 | 0.037 | −57.3 |
2017 | 0.042 | 0.005 | 0.023 | −37.8 |
2018 | 0.061 | 0.022 | 0.041 | 78.3 |
(a) | ||||
SON: Sea Surface Temperature Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006 | 0.22 | −0.50 | −0.28 | −0.39 |
2007 | −1.41 | −0.67 | −0.75 | −0.38 |
2008 | −0.73 | −0.63 | −0.30 | −0.75 |
2009 | −0.56 | −0.30 | −0.00 | −0.34 |
2010 | −0.69 | −0.45 | −0.66 | −0.84 |
2011 | −1.25 | −0.22 | −0.21 | −0.28 |
2012 | −0.42 | −0.48 | −0.21 | −0.50 |
2013 | 0.11 | −0.01 | 0.44 | −0.20 |
2014 | 1.55 | 1.34 | 0.73 | 1.52 |
2015 | 1.32 | 1.21 | 0.79 | 1.56 |
2016 | 0.35 | 0.49 | −0.18 | 0.23 |
2017 | 0.26 | 0.32 | 0.15 | 0.13 |
2018 | 0.85 | 0.33 | −0.02 | 0.25 |
(b) | ||||
DJF: Sea Surface Temperature Mean Anomalies | ||||
Year | Region 1 | Region 2 | Region 3 | Region 4 |
2006–2007 | −0.45 | −0.29 | −0.30 | −0.48 |
2007–2008 | −1.12 | −1.03 | −0.35 | −1.10 |
2008–2009 | −0.38 | −0.75 | 0.17 | −0.59 |
2009–2010 | −0.13 | −0.04 | 0.00 | −0.09 |
2010–2011 | −0.75 | −0.50 | −0.50 | −0.50 |
2011–2012 | −0.79 | −0.59 | −0.17 | −0.31 |
2012–2013 | −0.96 | −0.38 | −0.48 | −0.42 |
2013–2014 | 1.14 | −0.31 | 0.65 | −0.27 |
2014–2015 | 1.72 | 1.62 | 1.05 | 1.85 |
2015–2016 | 0.88 | 0.91 | 0.76 | 0.90 |
2016–2017 | −0.79 | 0.06 | 0.02 | 0.13 |
2017–2018 | −0.12 | 0.50 | 0.49 | 0.58 |
2018–2019 | 0.79 | 0.69 | 0.07 | 0.55 |
ENSO Amplitudes | |||
---|---|---|---|
Year | SON | DJF | Mean |
2006 | 0.7 | 0.7 | 0.7 |
2007 | −1.4 | −1.6 | −1.5 |
2008 | −0.4 | −0.8 | −0.6 |
2009 | 1.0 | 1.5 | 1.3 |
2010 | −1.7 | −1.4 | −1.6 |
2011 | −1.1 | −0.8 | −1.0 |
2012 | 0.2 | −0.4 | −0.1 |
2013 | −0.2 | −0.4 | −0.3 |
2014 | 0.4 | 0.6 | 0.5 |
2015 | 2.4 | 2.5 | 2.5 |
2016 | −0.7 | −0.3 | −0.5 |
2017 | −0.7 | −0.9 | −0.8 |
2018 | 0.7 | 0.8 | 0.8 |
Total Number of Landfalling AR Storms | ||||||
---|---|---|---|---|---|---|
WY | S. CA | C. CA | N. CA | OR | WA | Total |
2016–2017 | 5 | 4 | 16 | 15 | 10 | 50 |
2017–2018 | 1 | 2 | 10 | 10 | 8 | 31 |
2018–2019 | 3 | 4 | 13 | 14 | 6 | 41 |
2019–2020 | 4 | 3 | 5 | 10 | 18 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zechiel, P.R.; Chiao, S. Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019. Atmosphere 2021, 12, 201. https://doi.org/10.3390/atmos12020201
Zechiel PR, Chiao S. Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019. Atmosphere. 2021; 12(2):201. https://doi.org/10.3390/atmos12020201
Chicago/Turabian StyleZechiel, Paul R., and Sen Chiao. 2021. "Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019" Atmosphere 12, no. 2: 201. https://doi.org/10.3390/atmos12020201
APA StyleZechiel, P. R., & Chiao, S. (2021). Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019. Atmosphere, 12(2), 201. https://doi.org/10.3390/atmos12020201