Assessing Douro Vineyards Exposure to Tropospheric Ozone
Abstract
:1. Introduction
2. Description of the Study Area
3. Methodology
3.1. WRF-CHIMERE Modelling System
3.2. Study Period
3.3. Metrics of Assessment
- –dry deposition (g·m−2)
- —dry deposition velocity (m·s−1)
- —ozone concentration (g·m−3)
- —dry deposition velocity (m·s−1)
- —aerodynamic resistance (s·m−1)
- —surface resistance (s·m−1)
- —canopy resistance (s·m−1)
3.4. Observation Data and Model Validation
- Oi—observed value
- Mi—simulated value
- —representative value of the measurement uncertainty, which corresponds to the 95th percentile highest value among all uncertainty values calculated (see [59] for additional details regarding the derivation of the observation uncertainty)
4. Vineyard’s Exposure to O3
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Environmental Protection Agency (EPA). Air quality criteria for ozone and related photochemical oxidants volume I of III. Environ. Prot. 2006, 1, 820. [Google Scholar]
- Feng, Z.; Kobayashi, K.; Ainsworth, E.A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Glob. Chang. Biol. 2008, 14, 2696–2708. [Google Scholar] [CrossRef]
- Simpson, D.; Ashmore, M.R.; Emberson, L.; Tuovinen, J.-P. A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study. Environ. Pollut. 2007, 146, 715–725. [Google Scholar] [CrossRef]
- Ainsworth, E.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [Green Version]
- Black, V.J.; Black, C.R.; Roberts, J.A.; Stewart, C.A. Impact of ozone on the reproductive development of plants. New Phytol. 2000, 147, 421–447. [Google Scholar] [CrossRef]
- Heck, W.W.; Taylor, O.C.; Adams, R.; Bingham, G.; Miller, J.; Preston, E.; Weinstein, L. Assessment of crop loss from ozone. J. Air Pollut. Control. Assoc. 1982, 32, 353–361. [Google Scholar] [CrossRef]
- Holland, M.; Kinghorn, S.; Emberson, L.; Cinderby, S.; Ashmore, M.; Mills, G.; Harmens, H. Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. Nat. Environ. Res. Counc. CEH 2006, 1, 3–205. [Google Scholar]
- Karlsson, P.E.; Pleijel, H.; Belhaj, M.; Danielsson, H.; Dahlin, B.; Andersson, M.; Hansson, M.; Munthe, J.; Grennfelt, P. Economic assessment of the negative impacts of ozone on crop yields and forest production. A case study of the estate Ostads Säteri in southwestern Sweden. AMBIO 2005, 34, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Hayes, F.; Simpson, D.; Emberson, L.; Norris, D.; Harmens, H.; Büker, P. Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. Glob. Chang. Biol. 2010, 17, 592–613. [Google Scholar] [CrossRef] [Green Version]
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos. Environ. 2011, 45, 2297–2309. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Ribeiro, A.; Paoletti, E.; Miranda, A.I. Assessment of tropospheric ozone phytotoxic effects on the grapevine (Vitis vinifera L.): A review. Atmos. Environ. 2021, 244, 117924. [Google Scholar] [CrossRef]
- Emberson, L.D.; Ashmore, M.R.; Cambridge, H.M.; Simpson, D.G.; Tuovinen, J.P. Modelling stomatal ozone flux across Europe. Environ. Pollut. 2000, 109, 403–413. [Google Scholar] [CrossRef]
- Mauzerall, D.L.; Wang, X. Protectingagriculturalcrops from theeffects oftroposphericozoneexposure: Reconciling Science and Standard Setting in the United States, Europe, and Asia. Annu. Rev. Energy Environ. 2001, 26, 237–268. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, E.; Campanella, A.; Paolocci, M.; Trivellini, A.; Gennai, C.; Muganu, M.; Nali, C.; Lorenzini, G. Functional leaf traits and diurnal dynamics of photosynthetic parameters predict the behavior of grapevine varieties towards ozone. PLoS ONE 2015, 10, e0135056. [Google Scholar] [CrossRef] [Green Version]
- Emberson, L.D.; Simpson, D.; Ashmore, M.R.; Cambridge, H.M. Towards a Model of Ozone Deposition and Stomatal Uptake over Europe; The Norwegian Meteorological Institute: Oslo, Norway, 2000. [Google Scholar]
- Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M.R.; Mills, G. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux–response relationships for European wheat and potato. Atmos. Environ. 2007, 41, 3022–3040. [Google Scholar] [CrossRef]
- Castagna, A.; Ranieri, A. Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment. Environ. Pollut. 2009, 157, 1461–1469. [Google Scholar] [CrossRef]
- Musselman, R.C.; Lefohn, A.S.; Massman, W.J.; Heath, R.L. A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos. Environ. 2006, 40, 1869–1888. [Google Scholar] [CrossRef]
- Grünhage, L.; Krupa, S.; Legge, A.; Jäger, H.-J. Ambient flux-based critical values of ozone for protecting vegetation: Differing spatial scales and uncertainties in risk assessment. Atmos. Environ. 2004, 38, 2433–2437. [Google Scholar] [CrossRef]
- Monteiro, A.; Strunk, A.; Carvalho, A.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Rodriguez, A.; Souto, J.; Casares, J.; et al. Investigating a high ozone episode in a rural mountain site. Environ. Pollut. 2012, 162, 176–189. [Google Scholar] [CrossRef]
- Soja, G.; Reichenauer, T.G.; Eid, M.; Soja, A.-M.; Schaber, R.; Gangl, H. Long-term ozone exposure and ozone uptake of grapevines in open-top chambers. Atmos. Environ. 2004, 38, 2313–2321. [Google Scholar] [CrossRef]
- Jones, G. Uma Avaliação Do Clima Para a Região Demarcada Do Douro: Uma Análise das Condições Climáticas Do Passado, Presente e Futuro Para a Produção de Vinho; ADVID—Associação para o Desenvolvmento da Viticultura Duriense: Peso da Régua, Portugal, 2013; Available online: http://www.advid.pt/imagens/noticias/livro_PT_FinalWEB.pdf. (accessed on 1 January 2021)(In Prortugese). ISBN 9789899836808.
- Bateira, C.; Martins, L.; Santos, M.; Pereira, S. Cartografia da Susceptibilidade a Movimentos de Vertente na Região Demarcada do Douro; Universidade Lusófona: Porto, Portugal, 2011. (In portuguese) [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 9, 3092. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; Pirotti, F.; Cristante, A.; Marinello, F. Analysis and impact of recent climate trends on grape composition in north-east Italy. BIO Web Conf. 2019, 13, 04014. [Google Scholar] [CrossRef]
- Miranda, A.I.; Rocha, A.; Ribeiro, A.; Monteiro, A. (Eds.) Dourozone—Risco de Exposição ao Ozono Para a Vinha Duriense em Clima Atual e Futuro; UA Editora—Universidade de Aveiro: Aveiro, Portugal, 2018; ISBN 9789727895526. (In Portuguese) [Google Scholar]
- General Directorate for Territorial Development. A land cover/use map of mainland Portugal for 2010. Sustainability 2017, 9, 351. [Google Scholar]
- Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Souto, J.A.; Casares, J.J. High ozone levels in the northeast of Portugal: Analysis and characterization. Atmos. Environ. 2010, 44, 1020–1031. [Google Scholar] [CrossRef]
- Borrego, C.; Monteiro, A.; Martins, H.; Ferreira, J.; Fernandes, A.P.; Rafael, S.; Miranda, A.I.; Guevara, M.; Baldasano, J.M. Air quality plan for ozone: An urgent need for North Portugal. Air Qual. Atmos Health 2015, 9, 447–460. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. Chimere 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef] [Green Version]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. Chimere-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; Technical Report for University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High resolution WRF climatic simulations for the Iberian Peninsula: Model validation. Phys. Chem. Earth Parts A B C 2016, 94, 94–105. [Google Scholar] [CrossRef]
- Schmidt, H. A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmos Environ. 2001, 35, 6277–6297. [Google Scholar] [CrossRef]
- Bessagnet, B.; Hodzic, A.; Vautard, R.; Beekmann, M.; Cheinet, S.; Honoré, C.; Liousse, C.; Rouil, L. Aerosol modeling with CHIMERE—preliminary evaluation at the continental scale. Atmos. Environ. 2004, 38, 2803–2817. [Google Scholar] [CrossRef]
- Vautard, R.; Honore, C.; Beekmann, M.; Rouil, L. Simulation of ozone during the august 2003 heat wave and emission control scenarios. Atmos. Environ. 2005, 39, 2957–2967. [Google Scholar] [CrossRef]
- Hauglustaine, D.A.; Hourdin, F.; Jourdain, L.; Filiberti, M.-A.; Walters, S.; Lamarque, J.-F.; Holland, E.A. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Space Phys. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Vestreng, V.; Adams, M.; Goodwin, J. Inventory Review 2004—Emission Data Reported to CLRTAP and under the NEC Directive; EMEP/EEA Joint Review Report; Meteorological Synthesizing Centre-West of EMEP; The Norwegian Meteorological Institute: Oslo, Norway, 2004; ISSN 0804-2446. [Google Scholar]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Derognat, C.; Baeumle, M.; Beekmann, M.; Martin, D.; Schmidt, H. Effect of biogenic volatile organic compound emissions on tropospheric chemistry during the atmospheric pollution over the Paris Area (ESQUIF) campaign in the Ile-de-France region. J. Geophys. Res. Space Phys. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Carter, W.P.L. A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. Part A Gen. Top. 1990, 24, 481–518. [Google Scholar] [CrossRef]
- Gu, Y.; Li, K.; Xu, J.; Liao, H.; Zhou, G. Observed dependence of surface ozone on increasing temperature in Shanghai, China. Atmos. Environ. 2020, 221, 117108. [Google Scholar] [CrossRef]
- Porter, W.C.; Heald, C.L. The mechanisms and meteorological drivers of the summertime ozone–temperature relationship. Atmos. Chem. Phys. Discuss. 2019, 19, 13367–13381. [Google Scholar] [CrossRef] [Green Version]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Erisman, J.W.; Van Pul, A.; Wyers, P. Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ. 1994, 28, 2595–2607. [Google Scholar] [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergstrom, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model—Technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.; Tuovinen, J.-P.; Emberson, L.; Ashmore, M.R. Characteristics of an ozone deposition module II: Sensitivity analysis. Water Air Soil Pollut. 2003, 143, 123–137. [Google Scholar] [CrossRef]
- Franz, M.; Simpson, D.; Arneth, A.; Zaehle, S. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model. Biogeosciences 2017, 14, 45–71. [Google Scholar] [CrossRef] [Green Version]
- Padro, J.; Massman, W.J.; Den Hartog, G.; Neumann, H.H. Dry deposition velocity of O3 over a vineyard obtained from models and observations: The 1991 California ozone deposition experiment. Water Air Soil Pollut. 1994, 75, 307–323. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). AirBase—The European Air Quality Database. Available online: https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8#tab-figures-produced (accessed on 5 December 2016).
- Borrego, C.; Monteiro, A.; Ferreira, J.; Miranda, A.I.; Costa, A.M.; Carvalho, A.C.; Lopes, M. Procedures for estimation of modelling uncertainty in air quality assessment. Environ. Int. 2008, 34, 613–620. [Google Scholar] [CrossRef]
- Falasca, S.; Curci, G. High-resolution air quality modeling: Sensitivity tests to horizontal resolution and urban canopy with WRF-CHIMERE. Atmos. Environ. 2018, 187, 241–254. [Google Scholar] [CrossRef]
- Russo, M.A.; Gama, C.; Monteiro, A. How does upgrading an emissions inventory affect air quality simulations? Air Qual. Atmos Healh 2019, 12, 731–741. [Google Scholar] [CrossRef]
- Brands, S.; Fernández-García, G.; Vivanco, M.; Tesouro Montecelo, M.; Gallego Fernández, N.; David Saunders Estévez, A.; Enrique Carracedo García, P.; Neto Venâncio, A.; Melo Da Costa, P.; Costa Tomé, P.; et al. An exploratory performance assessment of the CHIMERE model (version 2017r4) for the northwestern Iberian Peninsula and the summer season. Geosci. Model Dev. 2020, 13, 3947–3973. [Google Scholar] [CrossRef]
- Vautard, R.; Schaap, M.; Bergström, R.; Bessagnet, B.; Brandt, J.; Builtjes, P.J.H.; Christensen, J.H.; Cuvelier, C.; Foltescu, V.; Graff, A.; et al. Skill and uncertainty of a regional air quality model ensemble. Atmos. Environ. 2009, 43, 4822–4832. [Google Scholar] [CrossRef]
- Monteiro, A.; Gouveia, S.; Scotto, M.G.; Lopes, J.; Gama, C.; Feliciano, M.; Miranda, A.I. Investigating ozone episodes in Portugal: A wavelet-based approach. Air Qual. Atmos Health 2015, 9, 775–783. [Google Scholar] [CrossRef] [Green Version]
- Thunis, P.; Pernigotti, D.; Gerboles, M. Model quality objectives based on measurement uncertainty. Part I: Ozone. Atmos. Environ. 2013, 79, 861–868. [Google Scholar] [CrossRef]
- Thunis, P.; Pederzoli, A.; Pernigotti, D. Performance criteria to evaluate air quality modeling applications. Atmos. Environ. 2012, 59, 476–482. [Google Scholar] [CrossRef]
- Gencarelli, C.N.; Hedgecock, I.M.; Sprovieri, F.; Schürmann, G.J.; Pirrone, N. Importance of ship emissions to local summertime ozone production in the mediterranean marine boundary layer: A Modeling study. Atmosphere 2014, 5, 937–958. [Google Scholar] [CrossRef] [Green Version]
- Pay, M.-T.; Gangoiti, G.; Guevara, M.; Napelenok, S.; Querol, X.; Jorba, O.; García-Pando, C.P. Ozone source apportionment during peak summer events over southwestern Europe. Atmos. Chem. Phys. 2019, 19, 5467–5494. [Google Scholar] [CrossRef] [Green Version]
- Lupascu, A.; Butler, T. Source attribution of European surface O3 using a tagged O3 mechanism. Atmos. Chem. Phys. 2019, 19, 14535–14558. [Google Scholar] [CrossRef] [Green Version]
- Tagaris, E.; Stergiou, I.; Sotiropoulou, R.P. Impact of shipping emissions on ozone levels over Europe: Assessing the relative importance of the Standard Nomenclature for Air Pollution (SNAP) categories. Environ. Sci. Pollut. Res. 2017, 24, 14903–14909. [Google Scholar] [CrossRef]
- Duncan, B.N.; West, J.J.; Yoshida, Y.; Fiore, A.M.; Ziemke, J.R. The influence of European pollution on ozone in the Near East and northern Africa. Atmos. Chem. Phys. Discuss. 2008, 8, 2267–2283. [Google Scholar] [CrossRef] [Green Version]
- Kallos, G.; Kotroni, V.; Lagouvardos, K.; Papadopoulos, A. On the Long-Range transport of air pollutants from Europe to Africa. Geophys. Res. Lett. 1998, 25, 619–622. [Google Scholar] [CrossRef]
- Duncan, B.N.; Bey, I. A modeling study of the export pathways of pollution from Europe: Seasonal and interannual variations (1987–1997). J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency (EEA) Ozone AOT40 for Crops. 2004. Available online: https://www.eea.europa.eu/data-and-maps/figures/ozone-aot40-for-crops-2004 (accessed on 18 December 2020).
- Insituto DOS Vihnos do Douro e Porto. IVDP—Estatística Geral. Available online: www.ivdp.pt (accessed on 12 December 2018).
- Carvalho, A.; Monteiro, A.; Solman, S.; Miranda, A.I.; Borrego, C. Climate-driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal. Environ. Sci. Policy 2010, 13, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Sacchelli, S.; Fabbrizzi, S.; Menghini, S. Climate change effects and adaptation strategies in the wine sector: A quantitative literature review. Wine Econ. Policy 2016, 5, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Brainard, J.S.; Jones, A.P.; Bateman, I.J.; Lovett, A.; Fallon, P.J. Modelling Environmental equity: Access to air quality in birmingham, england. Environ. Plan. A Econ. Space 2002, 34, 695–716. [Google Scholar] [CrossRef] [Green Version]
Process | Approach |
---|---|
Meteorology | Model WRF |
Land use | USGS database |
Anthropogenic emissions | EMEP inventory |
Biogenic emissions | MEGAN model |
Chemical Mechanism | MELCHIOR-2 |
Dry deposition | Wesely Parametrization |
Rank | Year | Average Temperature (°C) |
---|---|---|
1 | 1987 | 17.92 |
2 | 1990 | 17.53 |
3 | 2003 | 17.40 |
4 | 1995 | 17.35 |
5 | 1989 | 17.25 |
6 | 2005 | 17.23 |
7 | 1997 | 17.16 |
8 | 1991 | 16.96 |
9 | 1999 | 16.85 |
10 | 2004 | 16.71 |
11 | 1998 | 16.69 |
12 | 1992 | 16.53 |
13 | 2001 | 16.38 |
14 | 1996 | 16.21 |
15 | 2000 | 16.14 |
16 | 2002 | 15.98 |
17 | 1993 | 15.85 |
18 | 1988 | 15.79 |
19 | 1986 | 15.76 |
20 | 1994 | 15.71 |
Average 1986–2005 | 16.67 |
Code | Name | Type | Longitude (Degrees) | Latitude (Degrees) | Altitude (m) |
---|---|---|---|---|---|
DRN | Douro Norte | Rural | −7.79 | 41.37 | 1086 |
ERV | Ervedeira | Rural | −8.67 | 40.58 | 32 |
ES0013R | Peñausende | Rural | −5.89 | 41.23 | 985 |
ES0016R | O Saviñao | Rural | −7.70 | 42.63 | 506 |
ES1616A | Monfragüe | Rural | −5.93 | 39.84 | 376 |
FUN | Fundão | Rural | −7.17 | 40.13 | 473 |
CUS | Custóias-Matosinhos | Suburban | −8.64 | 41.20 | 100 |
ERM | Ermesinde-Valongo | Suburban | −8.55 | 41.20 | 140 |
ES1224A | Cementerio del Carmen | Suburban | −4.69 | 41.67 | 693 |
FRO | Frossos-Braga | Suburban | −8.46 | 41.57 | 51 |
ILH | Ílhavo | Suburban | −8.40 | 40.35 | 32 |
PER | Meco-Perafita | Suburban | −8.42 | 41.13 | 25 |
VNT | VN Telha-Maia | Suburban | −8.66 | 41.25 | 88 |
ES1449A | Salamanca | Urban | −5.65 | 40.94 | 797 |
ES1615A | Cáceres | Urban | −6.36 | 39.47 | 389 |
IGE | Instituto Geofísico de Coimbra | Urban | −8.24 | 40.12 | 147 |
Code | Name | Type | r | Bias (μg·m−3) | RMSE (μg·m−3) |
---|---|---|---|---|---|
DRN | Douro Norte | Rural | 0.7 | −28.3 | 37.3 |
ERV | Ervedeira | Rural | 0.7 | 2.9 | 23.3 |
ES0013R | Peñausende | Rural | 0.7 | −3.3 | 17.9 |
ES0016R | O Saviñao | Rural | 0.6 | 12.0 | 21.5 |
ES1616A | Monfragüe | Rural | 0.6 | 15.3 | 30.9 |
FUN | Fundão | Rural | 0.7 | 13.3 | 26.4 |
CUS | Custóias-Matosinhos | Suburban | 0.8 | 13.7 | 24.5 |
ERM | Ermesinde-Valongo | Suburban | 0.8 | 13.6 | 24.8 |
ES1224A | Cementerio del Carmen | Suburban | 0.8 | 17.5 | 29.2 |
FRO | Frossos-Braga | Suburban | 0.6 | 28.2 | 36.9 |
ILH | Ílhavo | Suburban | 0.6 | 19.3 | 31.9 |
PER | Meco-Perafita | Suburban | 0.6 | 10.6 | 27.7 |
VNT | VN Telha-Maia | Suburban | 0.7 | 14.3 | 26.2 |
ES1449A | Salamanca | Urban | 0.7 | 20.4 | 30.1 |
ES1615A | Cáceres | Urban | 0.6 | 11.9 | 30.7 |
IGE | Instituto Geofísico de Coimbra | Urban | 0.7 | 26.0 | 34.6 |
Average | 0.7 | 11.7 | 28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ascenso, A.; Gama, C.; Blanco-Ward, D.; Monteiro, A.; Silveira, C.; Viceto, C.; Rodrigues, V.; Rocha, A.; Borrego, C.; Lopes, M.; et al. Assessing Douro Vineyards Exposure to Tropospheric Ozone. Atmosphere 2021, 12, 200. https://doi.org/10.3390/atmos12020200
Ascenso A, Gama C, Blanco-Ward D, Monteiro A, Silveira C, Viceto C, Rodrigues V, Rocha A, Borrego C, Lopes M, et al. Assessing Douro Vineyards Exposure to Tropospheric Ozone. Atmosphere. 2021; 12(2):200. https://doi.org/10.3390/atmos12020200
Chicago/Turabian StyleAscenso, Ana, Carla Gama, Daniel Blanco-Ward, Alexandra Monteiro, Carlos Silveira, Carolina Viceto, Vera Rodrigues, Alfredo Rocha, Carlos Borrego, Myriam Lopes, and et al. 2021. "Assessing Douro Vineyards Exposure to Tropospheric Ozone" Atmosphere 12, no. 2: 200. https://doi.org/10.3390/atmos12020200
APA StyleAscenso, A., Gama, C., Blanco-Ward, D., Monteiro, A., Silveira, C., Viceto, C., Rodrigues, V., Rocha, A., Borrego, C., Lopes, M., & Miranda, A. I. (2021). Assessing Douro Vineyards Exposure to Tropospheric Ozone. Atmosphere, 12(2), 200. https://doi.org/10.3390/atmos12020200