Nocturnal Boundary Layer Erosion Analysis in the Amazon Using Large-Eddy Simulation during GoAmazon Project 2014/5
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Experimental Area
2.2. Micrometeorological Data
2.3. The Parallelized LES Model (PALM)
2.4. Initialization and Domain Size of the Simulations
2.5. NBL Erosion Calculation
3. Results and Discussion
3.1. Characteristics of IOP 1 and IOP 2
3.2. Modifications Due to the ENSO Event (Characteristics of IOP 3 and IOP 4)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Andreae, M.O.; Barbosa, H.M.J.; Fan, J.; et al. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Fisch, G.F.; Alves, L.M.; Sousa, N.V.; Fu, R.; Zhuang, Y. Meteorological context of the onset and end of the rainy season in Central Amazonia during the GoAmazon2014/5. Atmos. Chem. Phys. 2017, 17, 7671–7681. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.A.; Calheiros, A.J.; Biscaro, T.; Giangrande, S.; Dias, M.A.; Cecchini, M.A.; Albrecht, R.; Andreae, M.O.; Araujo, W.F.; Artaxo, P.; et al. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmos. Chem. Phys. 2018, 18, 6461–6482. [Google Scholar] [CrossRef] [Green Version]
- Stull, R.B. An. Introduction to Boundary Layer Meteorology, 1st ed.; Springer Science & Business Media: Dodrecht, The Netherlands, 1988; p. 670. [Google Scholar]
- Steeneveld, G.J. Current challenges in understanding and forecasting stable boundary layers over land and ice. Front. Environ. Sci. 2014, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L. Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 2014, 46, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L. Stably stratified flow in a shallow valley. Bound. Layer Meteorol. 2017, 162, 1–20. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L.; Banta, R.; Pichugina, Y.L. Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES99. J. Atmos. Sci. 2012, 69, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Pfister, L.; Sayde, C.; Selker, J.; Mahrt, L.; Thomas, C.K. Classifying the nocturnal boundary layer into temperature and flow regimes. Q. J. R. Meteorol. Soc. 2019, 145, 1515–1534. [Google Scholar] [CrossRef]
- Sun, J.; Lenschow, D.H.; LeMone, M.A.; Mahrt, L. The role of large-coherent eddy transport in the atmospheric surface layer based on CASES-99 observations. Bound. Layer Meteorol. 2016, 160, 83–111. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, J.; Miao, Y.; Liu, H.; Zhang, Y.; Li, Z.; Zhai, P. Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmos. Chem. Phys. 2016, 16, 9951–9963. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Yuan, R.; Wang, Z. Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmos. Meas. Tech. 2014, 7, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Wang, K.C. Estimation of atmospheric mixing layer height from radiosonde data. Atmos. Meas. Tech. 2014, 7, 1701–1709. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Stachlewska, I.S.; Song, X.; Heese, B.; Nemuc, A. Variability of the Boundary Layer Over an Urban Continental Site Based on 10 Years of Active Remote Sensing Observations in Warsaw. Remote. Sens. 2020, 12, 340. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, O.C.; Maroneze, R.; Costa, F.D.; Puhales, F.S.; Degrazia, G.A.; Martins, L.G.N.; Oliveira, P.E.S.; Mortarini, L. The nocturnal boundary layer transition from weakly to very stable. Part I Obs. Q. J. R. Meteorol. Soc. 2019, 145, 3577–3592. [Google Scholar] [CrossRef]
- Uzan, L.; Egert, S.; Khain, P.; Levi, Y.; Vadislavsky, E.; Alpert, P. Ceilometers as planetary boundary layer height detectors and a corrective tool for COSMO and IFS models. Atmos. Chem. Phys. 2020, 20, 12177–12192. [Google Scholar] [CrossRef]
- Carneiro, R.G.; Fisch, G. Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5). Atmos. Chem. Phys. 2020, 20, 5547–5558. [Google Scholar] [CrossRef]
- Marley, H.G.; Dirks, K.N.; McKendry, I.; Weissert, L.F.; Salmond, J.A. A Ceilometer-Derived Climatology of the Convective Boundary Layer Over a Southern Hemisphere Subtropical City. Bound. Layer Meteorol. 2020. [Google Scholar] [CrossRef]
- Neves, T.; Fisch, G.; Raasch, S. Local convection and turbulence in the Amazonia using large eddy simulation model. Atmosphere 2018, 9, 3990. [Google Scholar] [CrossRef] [Green Version]
- Yee, L.D.; Isaacman-VanWertz, G.; Wernis, R.A.; Meng, M.; Rivera, V.; Kreisberg, N.M.; Hering, S.V.; Bering, M.S.; Glasius, M.; Upshur, M.A.; et al. Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmos. Chem. Phys. 2018, 18, 10433–10457. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gong, W.; Mao, F.; Pan, Z. An Improved Iterative Fitting Method to Estimate Nocturnal Residual Layer Height. Atmosphere 2016, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, R.G.; Fisch, G.; Borges, C.K.; Henkes, A. Erosion of the nocturnal boundary layer in the central Amazon during the dry season. Acta Amaz. 2020, 50, 80–89. [Google Scholar] [CrossRef]
- Santos, L.R.; Fisch, G. Intercomparison between four methods of estimating the height of the convective boundary layer during the RACCI-LBA (2002) experiment in Rondônia-Amazonia. Rev. Bras. Meteorol. 2007, 22, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 2010, 115, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Neves, T.T.A.; Fisch, G. Nocturnal boundary layer over an Amazonian pasture area. Rev. Bras. Meteorol. 2011, 24, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Shukla, K.K.; Phanikumar, D.V.; Newsom, R.K.; Kumar, K.N.; Ratnam, M.V.; Naja, M.; Singh, N. Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler Lidar. J. Atmos. Sol. Terr. Phys. 2014, 109, 48–53. [Google Scholar] [CrossRef]
- Wiegner, M.; Madonna, F.; Binietoglou, I.; Forkel, R.; Gasteiger, J.; Geiß, A.; Pappalardo, G.; Schäfer, K.; Thomas, W. What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmos. Meas. Tech. 2014, 7, 1979–1997. [Google Scholar] [CrossRef] [Green Version]
- Morris, V. Ceilometer Instrument Handbook; Pacific Northwest National Laboratory: Richland, WA, USA, 2016. [Google Scholar]
- Geiß, A.; Wiegner, M.; Bonn, B.; Schäfer, K.; Forkel, R.; von Schneidemesser, E.; Münkel, C.; Chan, K.L.; Nothard, R. Mixing layer height as an indicator for urban air quality? Atmos. Meas. Tech. 2017, 10, 2969–2988. [Google Scholar] [CrossRef] [Green Version]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates; Li-Cor Biosciences: Lincoln, ME, USA, 2013. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Weil, J.C.; Patton, E.G.; Jonker, H.J.J.; Mironov, D.V. Turbulent winds and temperature fronts in Large-Eddy Simulations of the stable atmospheric boundary layer. J. Atmos. Sci. 2016, 73, 1815–1838. [Google Scholar] [CrossRef] [Green Version]
- Schwenkel, J.; Maronga, B. Towards a better representation of fog microphysics in Large-Eddy Simulations based on an embedded lagrangian cloud model. Atmosphere 2020, 11, 466. [Google Scholar] [CrossRef]
- El Guernaoui, O.; Reuder, J.; Esau, I.; Wolf, T.; Maronga, B. Scaling the Decay of Turbulence Kinetic Energy in the Free-Convective Boundary Layer. Bound. Layer Meteorol. 2019, 173, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Raasch, S.; Schröter, M. PALM-A large-eddy simulation model performing on massively parallel computers. Meteorol. Z. 2001, 10, 363–372. [Google Scholar] [CrossRef]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model. Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef] [Green Version]
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM model system 6.0. Geoscientific Model. Development 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Raasch, S.; Franke, T. Structure and formation of dust- devil-like vortices in the atmospheric boundary layer: A high resolution numerical study. J. Geophys. Res. 2011, 116, D16120. [Google Scholar] [CrossRef]
- Maronga, B.; Raasch, S. Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Bound. Layer Meteorol. 2013, 146, 17–44. [Google Scholar] [CrossRef] [Green Version]
- Maronga, B.; Hartogensis, O.K.; Raasch, S.; Beyrich, F. The effect of surface heterogeneity on the structure parameters of temperature and specific humidity: A large-eddy simulation case study for the LITFASS-2003 experiment. Bound. Layer Meteorol. 2014, 153, 441–470. [Google Scholar] [CrossRef] [Green Version]
- Kanani-Sühring, F.; Raasch, S. Enhanced scalar concentrations and fluxes in the lee of forest patches: A large-eddy simulation study. Bound. Layer Meteorol. 2017, 164, 1–17. [Google Scholar] [CrossRef]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound. Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Moeng, C.H.; Wyngaard, J.C. Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci. 1988, 45, 3573–3587. [Google Scholar] [CrossRef] [Green Version]
- Saiki, E.M.; Moeng, C.H.; Sullivan, P.P. Large-eddy simulation of the stably stratified planetary boundary layer. Bound. Layer Meteorol. 2000, 95, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Moeng, C.-H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 1984, 41, 2052–2062. [Google Scholar] [CrossRef]
- Mason, P.J. Large-eddy simulation: A critical review of the technique. Q. J. R. Meteorol. Soc. 1994, 120, 1–26. [Google Scholar] [CrossRef]
- Shaw, R.H.; Schumann, U. Large-eddy simulation of turbulent flow above and within a forest. Bound. Layer Meteorol. 1992, 61, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T. Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Bound. Layer Meteorol. 2004, 112, 207–341. [Google Scholar] [CrossRef]
- Wicker, L.J.; Skamarock, W.C. Time-splitting methods for elastic models using forward time schemes. Mon. Weather. Rev. 2002, 130, 2088–2097. [Google Scholar] [CrossRef]
- Williamson, J.H. Low-storage Runge–Kutta schemes. J. Comput. Phys. 1980, 35, 48–56. [Google Scholar] [CrossRef]
- Vernekar, K.G.; Mohan, B.; Saxena, S.; Patil, M.N. Characteristics of the atmospheric boundary layer over a tropical station as evidenced by tethered ballon observations. J. Appl. Meteorol. 1993, 32, 1426–1432. [Google Scholar] [CrossRef]
- Macedo, A.S.; Fisch, G. Temporal variability of solar radiation during the GOAmazon 2014/15 experiment. Rev. Bras. Meteorol. 2018, 33, 353–365. [Google Scholar] [CrossRef]
- Petenko, I.; Argentini, S.; Casasanta, G.; Kallistratova, M.; Sozzi, R.; Viola, A. Wavelike structures in the turbulent layer during the morning development of convection at Dome C., Antarctica. Bound. Layer Meteorol. 2016, 161, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Kallistratova, M.A.; Petenko, I.V.; Kouznetsov, R.D.; Kuznetsov, D.D.; Lyulyukin, V.S.; Perepelkin, V.G. Kelvin-Helmholtz billows in rising morning inversions. IOP Conf. Ser. Earth Environ. Sci. 2019, 231, 012025. [Google Scholar] [CrossRef]
NBL Erosion: IOP 1 | |||
---|---|---|---|
Period (Hour) | (m K) | (m K) | (m K) |
06–09 | 140.2 | 119.8 | 374.4 |
NBL Erosion: IOP 2 | |||
Period (Hour) | (m K) | (m K) | (m K) |
06–08 | 282.1 | 112.0 | 418.6 |
NBL Erosion: IOP 3 | |||
---|---|---|---|
Period (Hour) | (m K) | (m K) | (m K) |
06–09 | 145.4 | 127.3 | 386.2 |
NBL Erosion: IOP 4 | |||
Period (Hour) | (m K) | (m K) | (m K) |
06–08 | 292.5 | 146.5 | 350.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, R.; Fisch, G.; Neves, T.; Santos, R.; Santos, C.; Borges, C. Nocturnal Boundary Layer Erosion Analysis in the Amazon Using Large-Eddy Simulation during GoAmazon Project 2014/5. Atmosphere 2021, 12, 240. https://doi.org/10.3390/atmos12020240
Carneiro R, Fisch G, Neves T, Santos R, Santos C, Borges C. Nocturnal Boundary Layer Erosion Analysis in the Amazon Using Large-Eddy Simulation during GoAmazon Project 2014/5. Atmosphere. 2021; 12(2):240. https://doi.org/10.3390/atmos12020240
Chicago/Turabian StyleCarneiro, Rayonil, Gilberto Fisch, Theomar Neves, Rosa Santos, Carlos Santos, and Camilla Borges. 2021. "Nocturnal Boundary Layer Erosion Analysis in the Amazon Using Large-Eddy Simulation during GoAmazon Project 2014/5" Atmosphere 12, no. 2: 240. https://doi.org/10.3390/atmos12020240
APA StyleCarneiro, R., Fisch, G., Neves, T., Santos, R., Santos, C., & Borges, C. (2021). Nocturnal Boundary Layer Erosion Analysis in the Amazon Using Large-Eddy Simulation during GoAmazon Project 2014/5. Atmosphere, 12(2), 240. https://doi.org/10.3390/atmos12020240