Development and Assessment of Spatially Continuous Predictive Algorithms for Fine Particulate Matter in New York State
Abstract
:1. Introduction
Datasets
2. Interpolation for Spatially Continuous PM2.5 Maps
2.1. Interpolation Testing
2.2. Spatial Kriging
2.2.1. Simple Kriging
2.2.2. Machine Learning Methods
2.3. Results
2.3.1. Simple Kriging
2.3.2. Artificial Intelligence
3. Transient Testing of the Forecast Deep Neural Network
3.1. Algorithm Structure
3.2. Transient Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Datasets
NYSDEC ID | Station Name | Latitude | Longitude | Land Type |
---|---|---|---|---|
360010005 | Albany County Health Dept | 42.64 | −73.75 | Urban |
360290005 | Buffalo | 42.88 | −78.81 | Urban |
360291014 | Brookside Terrace | 43.00 | −78.90 | Suburban |
360310003 | Whiteface Base | 44.39 | −73.86 | Rural |
360551007 | Rochester 2 | 43.15 | −77.55 | Urban |
360590005 | Eisenhower Park | 40.74 | −73.59 | Suburban |
360652001 | Utica Health Dept | 43.10 | −75.23 | Urban |
360710002 | Newburgh | 41.50 | −74.01 | Urban |
360870005 | Rockland County | 41.18 | −74.03 | Rural |
361030009 | Holtsville | 40.83 | −73.06 | Suburban |
361192004 | White Plains | 41.05 | −73.76 | Suburban |
360050112 | IS 74 | 40.82 | −73.89 | Suburban |
360470052 | PS 314 | 40.64 | −74.02 | Urban |
360470118 | PS 274 | 40.69 | −73.93 | Suburban |
360610115 | Intermediate School 143 | 40.85 | −73.94 | Urban |
360610134 | Division Street | 40.71 | −74.00 | Urban |
360610135 | CCNY | 40.82 | −73.95 | Urban |
360810120 | Maspeth Library | 40.73 | −73.89 | Suburban |
360850111 | Freshkills West | 40.58 | −74.20 | Suburban |
360337003 | St Regis Mohawk-NY | 44.98 | −74.70 | Rural |
Name | Abbreviation | Latitude | Longitude | Land Type |
---|---|---|---|---|
Amherst | AMHT | 42.99 | −78.77 | Suburban |
CCNY | CCNY | 40.82 | −73.95 | Urban |
Holtsville | HOLT | 40.83 | −73.06 | Suburban |
IS 52 | IS52 | 40.82 | −73.90 | Suburban |
Loudonville | LOUD | 42.68 | −73.76 | Urban |
Queens College 2 | QC2 | 40.74 | −73.82 | Suburban |
Rochester Pri 2 | RCH2 | 43.15 | −77.55 | Urban |
Rockland County | RCKL | 41.18 | −74.03 | Rural |
S. Wagner HS | WGHS | 40.60 | −74.13 | Urban |
White Plains | WHPL | 41.05 | −73.76 | Suburban |
Appendix B. Description of DNN and Station Performance Results
Appendix B.1. Statistical Tools
Appendix B.2. Shape of the Neural Network
References
- Pope, C.A.I.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pope Iii, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JMMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, S.A.; Insaf, T.Z.; Hall, E.S.; Talbot, T.O.; Huff, A.K. Assessing the impact of fine particulate matter (PM 2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates. Environ. Res. 2016, 151, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Rattigan, O.V.; Felton, H.D.; Bae, M.-S.; Schwab, J.J.; Demerjian, K.L. Multi-year hourly PM2.5 carbon measurements in New York: Diurnal, day of week and seasonal patterns. Atmos. Environ. 2010, 44, 2043–2053. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Mohan, M.; Kandya, A.; Yadav, M. An evaluation and comparison of the various statistical and deterministic techniques for forecasting the concentration of criteria air pollutants. Int. J. Environ. Pollut. 2011, 44, 96. [Google Scholar] [CrossRef]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Stern, R.D.; Builtjes, P.; Schaap, M.; Timmermans, R.; Vautard, R.; Hodzic, A.; Memmesheimer, M.; Feldmann, H.; Renner, E.; Wolke, R. A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmos. Environ. 2008, 42, 4567–4588. [Google Scholar] [CrossRef]
- Hrust, L.; Klaić, Z.B.; Križan, J.; Antonić, O.; Hercog, P. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmos. Environ. 2009, 43, 5588–5596. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Lightstone, S.D.; Moshary, F.; Gross, B. Comparing CMAQ Forecasts with a Neural Network Forecast Model for PM2.5 in New York. Atmosphere 2017, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Shen, H.; Yuan, Q.; Zhang, X.; Zhang, L. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach. Geophys. Res. Lett. 2017, 44, 11985–11993. [Google Scholar] [CrossRef] [Green Version]
- MATLAB Optimization Toolbox, 2016a. Available online: https://www.mathworks.com/help/gads/options-changes-in-r2016a.html (accessed on 31 December 2020).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 31 December 2020).
- Airnow. 2000. Available online: https://www.airnow.gov/ (accessed on 31 December 2020).
- Available online: https://www.ready.noaa.gov/archives.php (accessed on 31 December 2020).
- Rapid Refresh (RAP). NOAA. Available online: https://rapidrefresh.noaa.gov (accessed on 31 December 2020).
- NOAA Operational Model Archive and Distribution System. Available online: http://nomads.ncep.noaa.gov (accessed on 31 December 2020).
- NOAA. Available online: http://www.emc.ncep.noaa.gov/mmb/aq/sv/grib/ (accessed on 31 December 2020).
- NOAA. Available online: http://www.emc.ncep.noaa.gov/mmb/aq/AQChangelog.html (accessed on 31 December 2020).
- Lee, P.; McQueen, J.; Stajner, I.; Huang, J.; Pan, L.; Tong, D.; Kim, H.; Tang, Y.; Kondragunta, S.; Ruminski, M.; et al. NAQFC developmental forecast guidance for fine particulate matter (PM2.5). Weather Forecast. 2017, 32, 343–360. [Google Scholar] [CrossRef]
- McKeen, S.; Chung, S.H.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Gong, W.; Bouchet, V.; Moffet, R.; Tang, Y.; et al. Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Sampson, P.D.; Richards, M.; Szpiro, A.A.; Bergen, S.; Sheppard, L.; Larson, T.V.; Kaufman, J.D. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos. Environ. 2013, 75, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- NASA. Available online: Ftp://[email protected]/DataRelease/NorthAmerica_2000-2016/ (accessed on 17 February 2021).
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Niu, M.; Gan, K.; Sun, S.; Li, F. Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting. J. Environ. Manag. 2017, 196, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent, San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
Case | Variable |
---|---|
Case 1 | MET, AOD |
Case 2 | MET, Kriged PM |
Case 3 | MET, AOD, Kriged PM |
Case | Variable | R2: Random Forest | R2: DNN |
---|---|---|---|
Case 1 | MET, AOD | 0.29 | 0.37 |
Case 2 | MET, Kriged PM | 0.80 | 0.82 |
Case 3 | MET, AOD, Kriged PM | 0.84 | 0.86 |
Forecast Model | R2 | RMSE |
---|---|---|
CMAQ | 0.20 | 4.58 |
Standard NN | 0.44 | 3.09 |
DNN | 0.58 | 2.67 |
DNN on Kriged Values | 0.59 | 2.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lightstone, S.; Gross, B.; Moshary, F.; Castillo, P. Development and Assessment of Spatially Continuous Predictive Algorithms for Fine Particulate Matter in New York State. Atmosphere 2021, 12, 315. https://doi.org/10.3390/atmos12030315
Lightstone S, Gross B, Moshary F, Castillo P. Development and Assessment of Spatially Continuous Predictive Algorithms for Fine Particulate Matter in New York State. Atmosphere. 2021; 12(3):315. https://doi.org/10.3390/atmos12030315
Chicago/Turabian StyleLightstone, Sam, Barry Gross, Fred Moshary, and Paulo Castillo. 2021. "Development and Assessment of Spatially Continuous Predictive Algorithms for Fine Particulate Matter in New York State" Atmosphere 12, no. 3: 315. https://doi.org/10.3390/atmos12030315
APA StyleLightstone, S., Gross, B., Moshary, F., & Castillo, P. (2021). Development and Assessment of Spatially Continuous Predictive Algorithms for Fine Particulate Matter in New York State. Atmosphere, 12(3), 315. https://doi.org/10.3390/atmos12030315