Present and Future High-Resolution Climate Forcings over Semiarid Catchments: Case of the Tensift (Morocco)
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
- The southern part includes the northern slope of the High Atlas; its highest point (Jbel Toubkal) is located at 4167 meters above sea level. Average annual precipitation varies between 600 and 700 mm/year [54,55] and snowfall is localized in the highest elevation areas above 1800m [3,56]. The melting of the snow stored in winter contributes to the shift of flows towards spring and the support of base flows during summer.
- The second part is the Haouz plain, characterized by average annual precipitation varying between 200 and 400 mm/year, located towards the west of the reliefs. The climate of this zone is semiarid. This part supports intensive irrigated agriculture, whose main crops are olives, citrus fruits, and wheat.
2.2. Data
2.2.1. Meteorological Observations
2.2.2. Climate Scenarios
2.2.3. Daily Snow-Covered Area MODIS
2.3. Method
2.3.1. Analysis Systems
SAFRAN
MicroMet
2.3.2. Implementation and Assessment
SAFRAN and MicroMet Implementation
SAFRAN Assessment
2.3.3. Scenario Downscaling
3. Results and Discussion
3.1. Assessment of SAFRAN Analysis
3.1.1. At the Station Level
Chichaoua Station (503 m)
Aremd Station (2058 m)
3.1.2. Catchment Scale (Rheraya)
3.1.3. Snow Assessment
3.2. Downscaling of Climate Change Scenarios
3.2.1. Projection of Euro-CORDEX Based on the Q–Q Approach
3.2.2. Projection of SAFRAN Reanalysis
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liston, G.E.; Elder, K. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeorol. 2006, 7, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Page, M.; Escadafal, R. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- Boudhar, A.; Duchemin, B.; Hanich, L.; Jarlan, L.; Chaponnière, A.; Maisongrande, P.; Boulet, G.; Chehbouni, A. Long-term analysis of snow-covered area in the Moroccan High-Atlas through remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S109–S115. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kuper, M.; Ameur, F.; Hammani, A. Unraveling the enduring paradox of increased pressure on groundwater through efficient drip irrigation. In Drip Irrigation for Agriculture: Untold Stories of Efficiency, Innovation and Development; Taylor & Francis: Oxford, UK, 2017; ISBN 9781315537146. [Google Scholar]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Seager, R.; Osborn, T.J.; Kushnir, Y.; Simpson, I.R.; Nakamura, J.; Liu, H. Climate variability and change of mediterranean-type climates. J. Clim. 2019. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424. [Google Scholar]
- Bolle, H.J. Mediterranean Climate: Variability and Trends; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3540438380. [Google Scholar]
- Jarlan, L.; Khabba, S.; Er-Raki, S.; Le Page, M.; Hanich, L.; Fakir, Y.; Merlin, O.; Mangiarotti, S.; Gascoin, S.; Ezzahar, J.; et al. Remote Sensing of Water Resources in Semi-Arid Mediterranean Areas: The joint international laboratory TREMA. Int. J. Remote Sens. 2015, 36, 4879–4917. [Google Scholar] [CrossRef]
- Knippertz, P.; Christoph, M.; Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 2003. [Google Scholar] [CrossRef]
- Gultepe, I. Mountain Weather: Observation and Modeling. Adv. Geophys. 2015, 56, 229–312. [Google Scholar]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018. [Google Scholar] [CrossRef] [Green Version]
- Levizzani, V.; Cattani, E. Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sens. 2013, 5, 4107. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L. Extreme events of precipitation over complex terrain derived from satellite data for climate applications: An evaluation of the southern slopes of the pyrenees. Remote Sens. 2020, 12, 2171. [Google Scholar] [CrossRef]
- Yu, L.; Ma, L.; Li, H.; Zhang, Y.; Kong, F.; Yang, Y. Assessment of high-resolution satellite rainfall products over a gradually elevating mountainous terrain based on a high-density rain gauge network. Int. J. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Dos Santos, V.J.; Calijuri, M.L.; Ribeiro Júnior, J.I.; de Assis, L.C. Rainfall estimation methods in the Brazilian semiarid region: 30-year evaluation on a monthly scale. Int. J. Clim. 2020. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; El Meslouhi, M.R.; Chehbouni, A. Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Tramblay, Y.; Thiemig, V.; Dezetter, A.; Hanich, L. Evaluation of satellite-based rainfall products for hydrological modelling in Morocco. Hydrol. Sci. J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Milewski, A.; Elkadiri, R.; Durham, M. Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco. Remote Sens. 2015, 7, 5697. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Dahlgren, P.; Landelius, T.; Kållberg, P.; Gollvik, S. A high-resolution regional reanalysis for Europe. Part 1: Three-dimensional reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM). Q. J. R. Meteorol. Soc. 2016. [Google Scholar] [CrossRef]
- Landelius, T.; Dahlgren, P.; Gollvik, S.; Jansson, A.; Olsson, E. A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Q. J. R. Meteorol. Soc. 2016, 142, 2132–2142. [Google Scholar] [CrossRef] [Green Version]
- Soci, C.; Bazile, E.; Besson, F.; Landelius, T.; Tellus, A. Dynamic Meteorology and Oceanography High-resolution precipitation re-analysis system for climatological purposes High-resolution precipitation re-analysis system for climatological purposes. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 29879. [Google Scholar] [CrossRef] [Green Version]
- Durand, Y.; Brun, E.; Merindol, L.; Guyomarc’h, G.; Lesaffre, B.; Martin, E. A Meteorological estimation of relevant parameters for snow models. Ann. Glaciol. 1993, 18, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Durand, Y.; Giraud, G.; Brun, E.; Merindol, L.; Martin, E. A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. J. Glaciol. 1999, 45, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Brun, E.; Martin, E.; Simon, V.; Gendre, C.; Coleou, C. An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol. 1989. [Google Scholar] [CrossRef] [Green Version]
- Habets, F.; Boone, A.; Champeaux, J.L.; Etchevers, P.; Franchistéguy, L.; Leblois, E.; Ledoux, E.; Le Moigne, P.; Martin, E.; Morel, S.; et al. The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France. J. Geophys. Res. Atmos. 2008. [Google Scholar] [CrossRef] [Green Version]
- Quintana-Seguí, P.; Le Moigne, P.; Durand, Y.; Martin, E.; Habets, F.; Baillon, M.; Canellas, C.; Franchisteguy, L.; Morel, S. Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J. Appl. Meteorol. Clim. 2008, 47, 92–107. [Google Scholar] [CrossRef]
- Vidal, J.P.; Martin, E.; Franchistéguy, L.; Baillon, M.; Soubeyroux, J.M. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int. J. Clim. 2010. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.; Gascoin, S.; Grusson, Y.; Murgue, C.; Bardeau, M.; Anctil, F.; Ferrant, S.; Lardy, R.; Le Moigne, P.; Leenhardt, D.; et al. On the Use of Hydrological Models and Satellite Data to Study the Water Budget of River Basins Affected by Human Activities: Examples from the Garonne Basin of France. Surv. Geophys. 2016, 37, 223–247. [Google Scholar] [CrossRef] [Green Version]
- Quintana-Seguí, P.; Peral, C.; Turco, M.; Llasat, M.C.; Martin, E. Meteorological analysis systems in North-East Spain: Validation of SAFRAN and SPAN. J. Environ. Inform. 2016. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Feki, H.; Quintana-Seguí, P.; Guijarro, J.A. The SAFRAN daily gridded precipitation product in Tunisia (1979–2015). Int. J. Clim. 2019, 39, 5830–5838. [Google Scholar] [CrossRef] [Green Version]
- Webster, S.; Brown, A.R.; Cameron, D.R.; Jones, C.P. Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 2003, 129, 1989–2010. [Google Scholar] [CrossRef]
- Mavromatis, T.; Voulanas, D. Evaluating ERA-Interim, Agri4Cast, and E-OBS gridded products in reproducing spatiotemporal characteristics of precipitation and drought over a data poor region: The Case of Greece. Int. J. Clim. 2020. [Google Scholar] [CrossRef]
- Greene, E.M.; Liston, G.E.; Pielke, R.A. Simulation of above treeline snowdrift formation using a numerical snow-transport model. Cold Reg. Sci. Technol. 1999, 30, 135–144. [Google Scholar] [CrossRef]
- Liston, G.E.; Sr, R.A.P.; Greene, E.M. Improving first-order snow-related deficiencies in a regional model. J. Geophys. Res. Atmos. 1999, 104, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Tarboton, D.G.; Liston, G.E.; Luce, C.H.; Seyfried, M.S. Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek, Idaho, United States of America. Water Resour. Res. 2001, 37, 1341–1356. [Google Scholar] [CrossRef]
- Hiemstra, C.A.; Liston, G.E.; Reiners, W.A. Snow Redistribution by Wind and Interactions with Vegetation at Upper Treeline in the Medicine Bow Mountains, Wyoming, U.S.A. Arct. Antarct. Alp. Res. 2002, 34, 262–273. [Google Scholar] [CrossRef]
- Liston, G.E.; Sturm, M. Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeorol. 2002, 3, 646–659. [Google Scholar] [CrossRef]
- Hasholt, B.; Liston, G.E.; Knudsen, N.T. Snow-Distribution Modelling in the Ammassalik Region, South East Greenland: Paper presented at the 13th Northern Res.Basins/Workshop (Saariselkä, Finland and Murmansk, Russia-Aug. 19–24 2001). Hydrol. Res. 2003, 34, 1–16. [Google Scholar] [CrossRef]
- Bruland, G.L.; Richardson, C.J. Hydrologic Gradients and Topsoil Additions Affect Soil Properties of Virginia Created Wetlands. Soil Sci. Soc. Am. J. 2004, 68, 2069–2077. [Google Scholar] [CrossRef] [Green Version]
- Liston, G.E.; Winther, J.G. Antarctic surface and subsurface snow and ice melt fluxes. J. Clim. 2005, 18, 1469–1481. [Google Scholar] [CrossRef]
- Chehbouni, A.; Escadafal, R.; Duchemin, B.; Boulet, G.; Simonneaux, V.; Dedieu, G.; Mougenot, B.; Khabba, S.; Kharrou, H.; Maisongrande, P.; et al. An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: The SUDMED Programme. Int. J. Remote Sens. 2008, 29, 5161–5181. [Google Scholar] [CrossRef] [Green Version]
- Driouech, F. Distribution des Précipitations Hivernales sur le Maroc Dans le Cadre d’un Changement Climatique: Descente D’échelle et Incertitudes. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2010. [Google Scholar]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Page, M.; Hagolle, O.; Berjamy, B. Assessment of Daily MODIS Snow Cover Products to Monitor Snow Cover Dynamics over the Moroccan Atlas Mountain Range. Remote Sens. Environ. 2015, 160, 72–86, ISSN 0034-4257. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) User Manual; Climate Research Branch Environment Canada: Burlington, ON, Canada, 2004. [Google Scholar]
- Chaponnière, A.; Boulet, G.; Chehbouni, A.; Aresmouk, M. Understanding hydrological processes with scarce data in a mountain environment. Hydrol. Process. Int. J. 2008, 22, 1908–1921. [Google Scholar] [CrossRef] [Green Version]
- Simonneaux, V.; Hanich, L.; Boulet, G.; Thomas, S. Modelling runoff in the Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J. Trends over the last decades. Materials and Methods the GR4J Model. In Proceedings of the 13th IWRA World Water Congress, Montpellier, France, 1–4 September 2008. [Google Scholar]
- Boudhar, A.; Hanich, L.; Boulet, G.; Duchemin, B.; Berjamy, B.; Chehbouni, A. Evaluation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains using two snow-cover estimates Evaluation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol. Sci. 2009, 37–41. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Bouras, E.; Jarlan, L.; Khabba, S.; Er-Raki, S.; Dezetter, A.; Sghir, F.; Tramblay, Y. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Cardell, M.F.; Romero, R.; Amengual, A.; Homar, V.; Ramis, C. A quantile–quantile adjustment of the EURO-CORDEX projections for temperatures and precipitation. Int. J. Clim. 2019, 39, 2901–2918. [Google Scholar] [CrossRef]
- Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS Snow and Sea Ice Products. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef] [Green Version]
- Baba, M.W.; Gascoin, S.; Hanich, L. Assimilation of Sentinel-2 data into a snowpack model in the High Atlas of Morocco. Remote Sens. 2018, 10, 1982. [Google Scholar] [CrossRef] [Green Version]
- Sadiki, W.; Fischer, C.; Geleyn, J.F. Mesoscale background error covariances: Recent results obtained with the limited-area model ALADIN over Morocco. Mon. Weather. Rev. 2000, 128, 3927–3935. [Google Scholar] [CrossRef]
- Ritter, B.; Geleyn, J.-F. A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations. Mon. Weather. Rev. 2002. [Google Scholar] [CrossRef] [Green Version]
- Liston, G.E.; Polashenski, C.; Rösel, A.; Itkin, P.; King, J.; Merkouriadi, I.; Haapala, J. A distributed snow-evolution model for sea-ice applications (snowmodel). J. Geophys. Res. Ocean. 2018, 123, 3786–3810. [Google Scholar] [CrossRef]
- Barnes, S.L. A Technique for Maximizing Details in Numerical Weather Map Analysis. J. Appl. Meteorol. Climatol. 1964. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.L. Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. 1973, 657–662. [Google Scholar] [CrossRef]
- Koch, S.E.; DesJardins, M.; Kocin, P.J. An Interactive Barnes Objective Map Analysis Scheme for Use with Satellite and Conventional Data. J. Appl. Meteorol. Climatol. 1983, 22, 1487–1503. [Google Scholar] [CrossRef]
- Efron, B.; Burnham, P. The Jackknife, the Bootstrap and Other Resampling Plans. Biometrics 1982, 39, 816. [Google Scholar] [CrossRef]
- Vaittinada Ayar, P.; Vrac, M.; Bastin, S.; Carreau, J.; Déqué, M.; Gallardo, C. Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: Present climate evaluations. Clim. Dyn. 2016, 46, 1301–1329. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim. Change 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Déqué, M. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Glob. Planet. Change 2007, 57, 16–26. [Google Scholar] [CrossRef]
- Marchane, A.; Tramblay, Y.; Hanich, L.; Ruelland, D.; Jarlan, L. Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrol. Sci. J. 2017, 62, 979–995. [Google Scholar] [CrossRef]
- Tramblay, Y.; Jarlan, L.; Hanich, L.; Somot, S. Future Scenarios of Surface Water Resources Availability in North African Dams. Water Resour. Manag. 2018, 32, 1291–1306. [Google Scholar] [CrossRef]
- WMO. World Meteorological Organization Guidelines on the Calculation of Climate Normals; WMO-No. 1203; WMO: Geneva, Switzerland, 2017; p. 18. [Google Scholar]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Change Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Sarr, M.A.; Seidou, O.; Tramblay, Y.; El Adlouni, S. Comparison of downscaling methods for mean and extreme precipitation in Senegal. J. Hydrol. Reg. Stud. 2015, 4, 365–389. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, A.J.; Spronken-Smith, R.A.; Sturman, A.P.; Owens, I.F. Spatial variability of surface radiation fluxes in mountainous terrain. J. Appl. Meteorol. 2003. [Google Scholar] [CrossRef]
- Durand, Y.; Giraud, G.; Laternser, M.; Etchevers, P.; Mérindol, L.; Lesaffre, B. Reanalysis of 47 Years of Climate in the French Alps (1958–2005): Climatology and Trends for Snow Cover. J. Appl. Meteorol. Clim. 2009, 48, 2487–2512. [Google Scholar] [CrossRef]
Name of Station | Geographic Coordinates (Lat/Lon) | Elevation (m) | Time Step | Data Availability |
---|---|---|---|---|
OUKAIMDEN | (31.22/−7.92) | 2680 | Hourly data | 2005–2007 |
MARRAKECH | (31.62/−7.96) | 464 | Hourly data | 1988–2014 |
SAFI | (32.28/−9.23) | 43 | Hourly data | 2004–2014 |
CHICHAOUA | (31.44/−8.61) | 505 | Hourly data | 2004–2014 |
ARMED | (31.12/−7.92) | 2058 | Hourly data | 2004–2014 |
R3 | (31.67/−7.59) | 563 | Hourly data | 2004–2013 |
OUNAGHA | (31.44/−9.28) | 526 | Hourly data | 2014 |
AGAFAY | (31.50/−8.23) | 516 | Hourly data | 2004–2014 |
S_A_GHYAT | (31.53/−7.85) | 578 | Hourly data | 2004–2014 |
NELTNER | (31.06/−7.93) | 3177 | Hourly data | 2007–2012 |
IMSKBOUR | (31.20/−7.94) | 1443 | Hourly data | 2007–2012 |
TACHDART | (31.15/−7.84) | 2385 | Hourly data | 2007–2012 |
ASNI | (31.25/−7.98) | 1170 | Hourly data | 2004, 2007–2012 |
GRAWA | (31.55/−7.87) | 531 | Hourly data | 2004–2010 |
AGDAL | (31.60/−7.97) | 489 | Hourly data | 2004–2008 |
OUKA | (31.09/−7.85) | 3239 | Hourly data | 2004–2011 |
SAADA | (31.63/−8.07) | 411 | Hourly data | 2004–2014 |
OUKAIMEDEN_CAF | (31.21/−7.86) | 2687 | Daily data | 1988–2005 |
Parameter | Average Observed | Average Analyzed | Bias | RMSE | Simple Correlation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irregular | 8 km | MicroMet | Irregular | 8 km | MicroMet | Irregular | 8 km | MicroMet | Irregular | 8 km | MicroMet | ||
Incoming Solar Radiation (W/m2) | 199.69 | 251.19 | 259.57 | 287.72 | 51.5 | 59.87 | 86.25 | 161.96 | 165.88 | 351.68 | 0.888 | 0.89 | 0.353 |
Surface temperature (°C) | 11.55 | 12.13 | 6.76 | 13.07 | 0.59 | −4.79 | 1.52 | 3.58 | 6.19 | 3.82 | 0.886 | 0.849 | 0.881 |
Wind (m/s) | 2.05 | 2.43 | 3.17 | 1.81 | 0.38 | 1.12 | −0.34 | 2.16 | 2.62 | 2.02 | 0.352 | 0.338 | 0.365 |
Precipitation (mm/day) | 1.18 | 1.02 | 0.72 | 0.88 | −0.16 | −0.46 | −0.37 | 3.83 | 4.41 | 3.09 | 0.608 | 0.373 | 0.833 |
Specific humidity (g/kg) | 4.65 | 5.61 | 3.96 | 5.45 | 0.97 | −0.69 | 0.81 | 2.13 | 1.98 | 1.71 | 0.663 | 0.595 | 0.758 |
DATE | Temperature (°C) | Incoming Solar Radiation (W/m2) | Rainfall (mm) | Snow (mm) | Wind Force (m/s) | |||||
---|---|---|---|---|---|---|---|---|---|---|
SAFRAN | MicroMet | SAFRAN | MicroMet | SAFRAN | MicroMet | SAFRAN | MicroMet | SAFRAN | MicroMet | |
2004/2005 | 11.0 | 12.0 | 260.7 | 284.7 | 186.6 | 129.9 | 61.7 | 50.0 | 2.8 | 2.1 |
2005/2006 | 10.8 | 11.5 | 253.6 | 282.7 | 314.3 | 260.8 | 91.4 | 77.1 | 2.9 | 2.2 |
2006/2007 | 10.9 | 11.6 | 260.2 | 291.7 | 272.0 | 193.4 | 79.9 | 69.1 | 2.3 | 2.0 |
2007/2008 | 11.4 | 11.8 | 263.5 | 293.6 | 282.4 | 319.9 | 73.3 | 65.0 | 2.4 | 2.1 |
2008/2009 | 10.4 | 10.6 | 235.2 | 304.0 | 466.9 | 490.2 | 141.3 | 95.5 | 2.9 | 2.2 |
2009/2010 | 12.4 | 12.6 | 240.9 | 315.0 | 324.1 | 362.5 | 72.7 | 57.2 | 2.8 | 1.8 |
2010/2011 | 12.0 | 12.1 | 229.8 | 259.1 | 502.1 | 541.9 | 76.2 | 64.3 | 2.8 | 1.9 |
2011/2012 | 11.6 | 11.6 | 252.7 | 210.3 | 235.0 | 288.4 | 84.7 | 80.1 | 2.5 | 1.5 |
Average (2004/2012) | 11.3 | 11.7 | 249.6 | 280.1 | 322.9 | 323.4 | 85.2 | 69.8 | 2.7 | 2.0 |
Tmax (°C) | Tmin (°C) | Pr (mm/Year) | ||||
---|---|---|---|---|---|---|
Marrakech | Oukaimeden | Marrakech | Oukaimeden | Marrakech | Oukaimeden | |
RCP4.5 | +1.6 | +1.9 | +1.3 | +1.8 | −48 (−22%) | −96 (−19%) |
RCP8.5 | +2.2 | +2.8 | +1.9 | +2.7 | −70.8 (−32%) | −181.2 (−35%) |
Mean Temperature (°C) | ||||
RCP4.5 | RCP8.5 | |||
SAFRAN | Euro-CORDEX | SAFRAN | Euro-CORDEX | |
Basin | +1.64 | +1.5 | +2.38 | +2.2 |
Plain | +1.48 | +1.5 | +2.12 | +2.1 |
Mountain | +1.71 | +1.7 | +2.5 | +2.5 |
Precipitation (mm/year) | ||||
RCP4.5 | RCP8.5 | |||
SAFRAN | Euro-CORDEX | SAFRAN | Euro-CORDEX | |
Basin | −32.99 (−11%) | −36.2 (−15%) | −58.5 (−20%) | −72.31 (−31%) |
Plain | −34.66 (−16%) | −35.78 (−16%) | −65.19 (−30%) | −69.33 (−31%) |
Mountain | −32.22 (−9%) | −37.32 (−14%) | −55.40 (−16%) | −80.30 (−32%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moucha, A.; Hanich, L.; Tramblay, Y.; Saaidi, A.; Gascoin, S.; Martin, E.; Le Page, M.; Bouras, E.; Szczypta, C.; Jarlan, L. Present and Future High-Resolution Climate Forcings over Semiarid Catchments: Case of the Tensift (Morocco). Atmosphere 2021, 12, 370. https://doi.org/10.3390/atmos12030370
Moucha A, Hanich L, Tramblay Y, Saaidi A, Gascoin S, Martin E, Le Page M, Bouras E, Szczypta C, Jarlan L. Present and Future High-Resolution Climate Forcings over Semiarid Catchments: Case of the Tensift (Morocco). Atmosphere. 2021; 12(3):370. https://doi.org/10.3390/atmos12030370
Chicago/Turabian StyleMoucha, Ahmed, Lahoucine Hanich, Yves Tramblay, Amina Saaidi, Simon Gascoin, Eric Martin, Michel Le Page, Elhoussaine Bouras, Camille Szczypta, and Lionel Jarlan. 2021. "Present and Future High-Resolution Climate Forcings over Semiarid Catchments: Case of the Tensift (Morocco)" Atmosphere 12, no. 3: 370. https://doi.org/10.3390/atmos12030370
APA StyleMoucha, A., Hanich, L., Tramblay, Y., Saaidi, A., Gascoin, S., Martin, E., Le Page, M., Bouras, E., Szczypta, C., & Jarlan, L. (2021). Present and Future High-Resolution Climate Forcings over Semiarid Catchments: Case of the Tensift (Morocco). Atmosphere, 12(3), 370. https://doi.org/10.3390/atmos12030370