Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Its Surroundings
2.2. Questionnaire Data Collection
2.3. Odor Expoure
2.3.1. Sampling Campaign
2.3.2. Determination of Odor Concentration and Odor Emission Rate
2.3.3. Odor Dispersion Model
2.4. Perception-Related Odor Exposure Analysis
2.4.1. Preliminary Perception-Related Odor Exposure Variables
- (1)
- Peak-to-mean factor (F): In regard to the duration of one single human breath, the short-term concentration fluctuations were transformed from one hour mean values of the odor concentrations (e.g., constant value 4 (Germany), 2.3 (Italy) or 1 (UK)) [15];
- (2)
- Temperature and daytime: The annoyed time period of the year and time period of the day were obtained by the community questionnaires to emphasize those hourly values, when residents are more sensitive to odor.
2.4.2. Perception-Related Odor Exposures by OICs
- (1)
- The threshold of a certain percentile at a certain site: The odor concentrations at 98, 95, 90, 85, 80, and 70 percentiles were selected, based on the time series of the preliminary perception-related odor concentrations, expressed as C98, C95, C90, C85, C80, and C70, respectively;
- (2)
- The threshold of a certain concentration at a certain site: The probabilities exceeding odor concentration thresholds of 1, 2, 3, 4, and 5 ou/m3 were selected, based on the time series of the preliminary perception-related odor concentrations, expressed as P1, P2, P3, P4, and P5, respectively.
2.5. Dose–Response Relationship Analysis
3. Results and Discussion
3.1. Socio-Demographic Characteristics of Participants
3.2. Odor Exposure and Perception-Related Odor Exposure
3.3. Dose–Response Relationship by Binomial Univariate Logistic Models
3.4. Goodness of Fit and Predictive Ability of Binomial Logistic Models
3.5. Odor Impact Criteria of the WWTP
3.6. Lagrange Dispersion Model and Separation Distances
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Wang, X.D.; Wang, B.G.; Zhao, D.J.; Liu, S.L. Sources and components of MVOC from a municipal sewage treatment plant in Guangzhou. China Environ. Sci. 2011, 31, 576–583. [Google Scholar]
- Stuetz, R.M.; Fenner, R.A.; Engin, G. Assessment of odours from sewage treatment works by an electronic nose, H2S analysis and olfactometry. Water Res. 1999, 33, 453–461. [Google Scholar] [CrossRef]
- Han, Z.; Qi, F.; Wang, H.; Li, R.; Sun, D. Odor assessment of NH3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant. Bioresour. Technol. 2019, 282, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Barczak, R.J.; Kulig, A. Comparison of different measurement methods of odour and odorants used in the odour impact assessment of wastewater treatment plants in Poland. Water Sci. Technol. 2017, 75, 944–951. [Google Scholar] [CrossRef]
- Lim, J.H.; Cha, J.S.; Kong, B.J.; Baek, S.H. Characterization of odorous gases at landfill site and in surrounding areas. J. Environ. Manag. 2018, 206, 291–303. [Google Scholar] [CrossRef]
- Mohamed, E.; Shelly, M. Industrial odor source identification based on wind direction and social participation. Int. J. Environ. Res. Public Health 2019, 16, 1242. [Google Scholar]
- Hayes, J.E.; Fisher, R.M.; Stevenson, R.J.; Mannebeck, C.; Stuetz, R.M. Unrepresented community odour impact: Improving engagement strategies. Sci. Total Environ. 2017, 609, 1650–1658. [Google Scholar] [CrossRef]
- Brancher, M.; Piringer, M.; Franco, D.; Filho, P.B.; Lisboa, H.D.M.; Schauberger, G. Assessing the inter-annual variability of separation distances around odour sources to protect the residents from odour annoyance. J. Environ. Sci. 2019, 79, 11–24. [Google Scholar] [CrossRef]
- Douglas, P.; Hayes, E.T.; Williams, W.B.; Tyrrel, S.F.; Kinnersley, R.P.; Walsh, K.; Driscolle, M.O.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H. Use of dispersion modelling for environmental impact assessment of biological air pollution from composting: Progress, problems and prospects. Waste Manag. 2017, 70, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.; Sharan, M. Performance evaluation of dispersion parameterization schemes in the plume simulation of FFT-07 diffusion experiment. Atmos. Environ. 2018, 172, 32–46. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. A comparison of separation distances against odour annoyance calculated with two models. Atmos. Environ. 2015, 116, 22–35. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Centola, P.; Rosso, R.D. Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmos. Environ. 2010, 44, 354–360. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Sommer-Quabach, E.; Piringer, M.; Petz, E.; Schauberger, G. Comparability of separation distances between odour sources and residential areas determined by various national odour impact criteria. Atmos. Environ. 2014, 95, 20–28. [Google Scholar] [CrossRef]
- Brancher, M.; Griffiths, K.D.; Franco, D.; De Melo Lisboa, H. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef] [PubMed]
- Piringer, M.; Schauberger, G.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Schönhart, M. Climate change impact on the dispersion of airborne emissions and the resulting separation distances to avoid odour annoyance. Atmos. Environ. X 2019, 2, 100021. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Schmitzer, R.; Kamp, M.; Sowa, A.; Koch, R.; Eckhof, W.; Grimm, E.; Kypke, J.; Hartung, E. Concept to assess the human perception of odour by estimating short-time peak concentrations from one-hour mean values. Reply to a comment by Janicke et al. Atmos. Environ. 2012, 54, 624–628. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Petz, E. Odour episodes in the vicinity of livestock buildings: A qualitative comparison of odour complaint statistics with model calculations. Agric. Ecosyst. Environ. 2006, 114, 185–194. [Google Scholar] [CrossRef]
- Li, J.; Zou, K.; Li, W.; Wang, G.; Yang, W. Olfactory Characterization of Typical Odorous Pollutants Part I: Relationship between the Hedonic Tone and Odor Concentration. Atmosphere 2019, 10, 524. [Google Scholar] [CrossRef] [Green Version]
- Miedema, H.M.E.; Walpot, J.I.; Vos, H. Exposure-annoyance relationships for odour from industrial sources. Atmos. Environ. 2000, 34, 2927–2936. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Baelum, J.; Nadimi, E.S.; Løfstrøm, P.; Christensen, L.P. Chronic exposure to odorous chemicals in residential areas and effects on human psychosocial health: Dose–response relationships. Sci. Total Environ. 2014, 490, 545–554. [Google Scholar] [CrossRef]
- Cantuaria, M.L.; Lofstrom, P.; Blanes-Vidal, V. Comparative analysis of spatio-temporal exposure assessment methods for estimating odor-related responses in non-urban populations. Sci. Total Environ. 2017, 605–606, 702–712. [Google Scholar] [CrossRef]
- Moshammer, H.; Oettl, D.; Mandl, M.; Kropsch, M.; Weitensfelder, L. Comparing annoyance potency assessments for odors from different livestock animals. Atmosphere 2019, 10, 659. [Google Scholar] [CrossRef] [Green Version]
- Sucker, K.; Both, R.; Bischoff, M.; Guski, R.; Krämer, U.; Winneke, G. Odor frequency and odor annoyance Part II: Dose–response associations and their modification by hedonic tone. Int. Arch. Occup. Environ. Heath 2008, 81, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Weitensfelder, L.; Moshammer, H.; Dietmar, O.; Payer, I. Exposure-complaint relationships of various environmental odor sources in Styria, Austria. Environ. Sci. Pollut. Res. 2019, 26, 9806–9815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verein Deutscher Ingenieure. Determination of Annoyance Parameters by Questioning Repeated Brief Questioning of Neighbour Panelists (VDI3883 Part 2); Beuth Verlag GmbH: Berlin, Germany, 1993. [Google Scholar]
- Hayes, J.E.; Stevenson, R.J.; Stuetz, R.M. Survey of the effect of odour impact on communities. J. Environ. Manag. 2017, 204, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Miedema, H.M.E.; Ham, J.M. Odour annoyance in residential areas. Atmos. Environ. 1988, 22, 2501–2507. [Google Scholar] [CrossRef]
- Mustafa, M.F.; Liu, Y.; Duan, Z.; Guo, H.; Xu, S.; Wang, H.; Lu, W. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard Mater. 2016, 327, 35–43. [Google Scholar] [CrossRef]
- Jiang, K.; Bliss, P.J.; Schulz, T.J. The development of a sampling system for determining odor emission rates from areal surfaces: Part I. aerodynamic performance. J. Air Waste Manag. Assoc. 1995, 45, 917–922. [Google Scholar] [CrossRef]
- Lucernoni, F.; Tapparo, F.; Capelli, L.; Sironi, S. Evaluation of an odour emission factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ. 2016, 144, 87–99. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of China (MEEC). Air Quality-Determination of Odor-Triangle Odor Bag Method (GB 1467593); Ministry of Ecology and Environment of China: Beijing, China, 1993.
- Capelli, L.; Selena, S. Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ. 2018, 191, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Businia, V.; Capelli, L.; Sironi, S. Comparison of CALPUFF and AERMOD models for odour dispersion simulation. Chem. Eng. Trans. 2012, 30, 205–210. [Google Scholar]
- Invernizzi, M.; Brancher, M.; Sironi, S.; Capelli, L.; Piringer, M.; Schauberger, G. Odour impact assessment by considering short-term ambient concentrations: A multi-model and two-site comparison. Environ. Int. 2020, 144, 105990. [Google Scholar] [CrossRef]
- Bull, M.; McIntyre, A.; Hall, D. Guidance on the Assessment of Odour for Planning v1.1; IAQM: London, UK, 2018. [Google Scholar]
- Scire, J.S.; Strimaitis, D.G.; Yamartino, R.J. A user’s guide for the CALPUFF dispersion model. Earth Tech. Inc. 2000, 521, 1–521. [Google Scholar]
- Rood, A. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos. Environ. 2014, 89, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Guo, H.; Laguë, C. Development of a livestock odor dispersion model: Part II. Evaluation and validation. J. Air Waste Manag. Assoc. 2011, 61, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Brancher, M.; Yang, F.; Liu, J.; Qu, C.; Schauberger, G.; Piringer, M. A comparative analysis of methods for determining odour-related separation distances around a dairy farm in Beijing, China. Atmosphere 2019, 10, 231. [Google Scholar] [CrossRef] [Green Version]
Title Questionnaire Result | Investigated Residential Area | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | G | K | L | |
Questionnaire number | 10 | 10 | 12 | 13 | 11 | 11 | 12 | 10 | 11 | 12 | 10 | 15 |
Averaged odor intensity | 2.8 | 2.5 | 2.8 | 3.0 | 3.0 | 2.4 | 2.1 | 0.8 | 0.8 | 2.5 | 0.7 | 1.4 |
Odor annoyance (%) | 75 | 33 | 64 | 45 | 63 | 55 | 44 | 11 | 10 | 50 | 0 | 29 |
Odor Concentration | Peak to Mean Factor | Variable of Odor Exposure: The Threshold of Concentration | |||||
---|---|---|---|---|---|---|---|
Modeled by a Year | Modeled by Summer | Modeled by Nighttime of Summer | |||||
C70 | 4/2.3/1 | 2.063 | 1.433–2.971 | 1.967 | 1.440–2.688 | 1.757 | 1.347–2.293 |
C80 | 4/2.3/1 | 2.438 | 1.577–3.770 | 2.481 | 1.630–3.714 | 2.254 | 1.553–3.273 |
C85 | 4/2.3/1 | 2.279 | 1.499–3.466 | 2.308 | 1.557–3.416 | 2.402 | 1.589–3.633 |
C90 | 4/2.3/1 | 2.193 | 1.398–3.439 | 2.365 | 1.534–3.647 | 2.475 | 1.597–3.835 |
C95 | 4/2.3/1 | 2.278 | 1.408–3.687 | 2.473 | 1.543–3.964 | 3.153 | 1.870–5.316 |
C98 | 4/2.3/1 | 2.652 | 1.493–4.712 | 3.448 | 1.855–6.409 | 4.085 | 2.128–7.843 |
Odor Percentile | Peak to Mean Factor | Variable of Odor Exposure: The Threshold of Percentile | |||||
Modeled by a Year | Modeled by Summer | Modeled by Nighttime of Summer | |||||
P1 | 1 | 7.403 | 2.674–20.499 | 6.287 | 2.659–14.867 | 8.362 | 3.135–22.307 |
2.3 | 11.791 | 3.363–41.343 | 8.277 | 3.065–22.356 | 13.821 | 3.987–47.902 | |
4 | 18.103 | 4.204–77.954 | 10.942 | 3.591–33.338 | 20.836 | 5.077–85.516 | |
P2 | 1 | 3.814 | 1.842–7.893 | 4.257 | 2.119–8.551 | 3.840 | 2.021–7.295 |
2.3 | 7.874 | 2.767–22.412 | 6.371 | 2.677–15.162 | 8.719 | 3.163–24.036 | |
4 | 10.345 | 3.134–34.148 | 7.627 | 2.936–19.812 | 12.677 | 3.833–41.931 | |
P3 | 1 | 2.594 | 1.515–4.440 | 3.066 | 1.769–5.313 | 2.824 | 1.743–4.576 |
2.3 | 6.902 | 2.585–18.428 | 6.014 | 2.604–13.892 | 7.110 | 2.876–17.575 | |
4 | 8.536 | 2.882–25.283 | 6.681 | 2.759–16.177 | 9.735 | 3.366–28.156 | |
P4 | 1 | 2.177 | 1.383–3.428 | 2.555 | 1.601–4.077 | 2.411 | 1.606–3.619 |
2.3 | 4.851 | 2.118–11.107 | 4.986 | 2.351–10.574 | 4.759 | 2.287–9.901 | |
4 | 7.403 | 2.674–20.499 | 6.032 | 2.603–13.981 | 8.362 | 3.135–22.307 | |
P5 | 1 | 1.950 | 1.309–2.906 | 2.231 | 1.486–3.349 | 2.143 | 1.496–3.070 |
2.3 | 3.448 | 1.747–6.806 | 3.776 | 1.975–7.220 | 3.527 | 1.934–6.430 | |
4 | 6.934 | 2.589–18.575 | 5.834 | 2.557–13.307 | 7.298 | 2.916–18.262 |
Odor Concentration | Peak to Mean Factor | Variable of Odor Exposure: The Threshold of Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Modeled by a Year | Modeled by Summer | Modeled by Nighttime of Summer | ||||||||
AIC | McFadden R2 | HL Test | AIC | McFadden R2 | HL Test | AIC | McFadden R2 | HL Test | ||
C70 | 4/2.3/1 | 157.6 | 0.105 | 0.335 | 154.3 | 0.124 | 0.083 | 154.8 | 0.121 | 0.104 |
C80 | 4/2.3/1 | 156.5 | 0.110 | 0.045 | 153.1 | 0.130 | 0.028 | 153.5 | 0.128 | 0.107 |
C85 | 4/2.3/1 | 158.6 | 0.099 | 0.098 | 155.1 | 0.119 | 0.016 | 155.5 | 0.117 | 0.073 |
C90 | 4/2.3/1 | 162.7 | 0.075 | 0.102 | 162.7 | 0.075 | 0.032 | 156.7 | 0.109 | 0.050 |
C95 | 4/2.3/1 | 163.2 | 0.072 | 0.144 | 159.6 | 0.093 | 0.220 | 153.3 | 0.129 | 0.274 |
C98 | 4/2.3/1 | 163.2 | 0.072 | 0.036 | 157.6 | 0.104 | 0.098 | 153.6 | 0.127 | 0.109 |
Odor Percentile | Peak to Mean Factor | Variable of Odor Exposure: The Threshold of Percentile | ||||||||
Modeled by a Year | Modeled by Summer | Modeled by Nighttime of Summer | ||||||||
AIC | McFadden R2 | HL Test | AIC | McFadden R2 | HL Test | AIC | McFadden R2 | HL Test | ||
P1 | 1 | 158.6 | 0.098 | 0.115 | 155.1 | 0.119 | 0.075 | 154.5 | 0.123 | 0.141 |
2.3 | 158.2 | 0.101 | 0.112 | 155.1 | 0.119 | 0.016 | 155.2 | 0.118 | 0.560 | |
4 | 157.6 | 0.104 | 0.248 | 154.5 | 0.122 | 0.289 | 154.3 | 0.124 | 0.699 | |
P2 | 1 | 160.0 | 0.090 | 0.465 | 155.2 | 0.118 | 0.054 | 154.0 | 0.125 | 0.350 |
2.3 | 158.4 | 0.100 | 0.230 | 155.1 | 0.119 | 0.163 | 155.0 | 0.119 | 0.250 | |
4 | 158.4 | 0.099 | 0.151 | 155.1 | 0.119 | 0.037 | 155.0 | 0.120 | 0.509 | |
P3 | 1 | 161.3 | 0.083 | 0.168 | 156.0 | 0.114 | 0.026 | 152.9 | 0.131 | 0.215 |
2.3 | 158.5 | 0.099 | 0.124 | 154.8 | 0.120 | 0.077 | 154.1 | 0.125 | 0.147 | |
4 | 158.3 | 0.100 | 0.111 | 154.8 | 0.121 | 0.040 | 154.7 | 0.121 | 0.017 | |
P4 | 1 | 162.5 | 0.075 | 0.079 | 156.6 | 0.110 | 0.436 | 153.0 | 0.131 | 0.063 |
2.3 | 158.9 | 0.097 | 0.750 | 153.9 | 0.126 | 0.076 | 153.5 | 0.128 | 0.398 | |
4 | 158.6 | 0.098 | 0.115 | 155.1 | 0.119 | 0.385 | 154.5 | 0.123 | 0.141 | |
P5 | 1 | 163.3 | 0.071 | 0.031 | 157.1 | 0.107 | 0.170 | 154.5 | 0.123 | 0.259 |
2.3 | 160.4 | 0.088 | 0.361 | 155.8 | 0.115 | 0.039 | 154.0 | 0.125 | 0.173 | |
4 | 158.5 | 0.099 | 0.052 | 155.0 | 0.120 | 0.067 | 154.2 | 0.124 | 0.142 |
Odor Concentration | Peak to Mean Factor | Variable of Odor Exposure: The Threshold of Percentile Concentration | |||||
---|---|---|---|---|---|---|---|
Modeled by a Year | Modeled by Summer | Modeled by Nighttime of Summer | |||||
Accuracy (%) | AUC | Accuracy (%) | AUC | Accuracy (%) | AUC | ||
C70 | 4/2.3/1 | 64.3 | 0.711 | 64.3 | 0.742 | 65.9 | 0.730 |
C80 | 4/2.3/1 | 63.5 | 0.711 | 64.3 | 0.736 | 62.7 | 0.738 |
C85 | 4/2.3/1 | 62.7 | 0.713 | 63.5 | 0.738 | 62.7 | 0.740 |
C90 | 4/2.3/1 | 63.5 | 0.684 | 61.9 | 0.727 | 65.1 | 0.734 |
C95 | 4/2.3/1 | 64.3 | 0.679 | 62.7 | 0.710 | 63.5 | 0.743 |
C98 | 4/2.3/1 | 65.1 | 0.672 | 66.7 | 0.717 | 63.5 | 0.736 |
Odor Percentile | Peak to Mean Factor | Variable of Odor Exposure: The Threshold of Percentile | |||||
Modeled by a Year | Modeled by Summer | Modeled by Nighttime of Summer | |||||
Accuracy (%) | AUC | Accuracy (%) | AUC | Accuracy (%) | AUC | ||
P1 | 1 | 62.7 | 0.713 | 64.3 | 0.740 | 65.1 | 0.736 |
2.3 | 64.3 | 0.708 | 65.1 | 0.736 | 65.1 | 0.728 | |
4 | 64.3 | 0.711 | 64.3 | 0.735 | 65.1 | 0.735 | |
P2 | 1 | 63.5 | 0.696 | 64.3 | 0.720 | 65.9 | 0.727 |
2.3 | 65.1 | 0.712 | 64.3 | 0.734 | 65.1 | 0.737 | |
4 | 64.3 | 0.709 | 63.5 | 0.739 | 65.1 | 0.729 | |
P3 | 1 | 64.3 | 0.688 | 63.5 | 0.721 | 65.1 | 0.733 |
2.3 | 62.7 | 0.708 | 63.5 | 0.739 | 65.1 | 0.732 | |
4 | 65.1 | 0.712 | 64.3 | 0.736 | 65.1 | 0.736 | |
P4 | 1 | 65.1 | 0.683 | 62.7 | 0.722 | 66.7 | 0.736 |
2.3 | 62.7 | 0.701 | 64.3 | 0.740 | 65.1 | 0.730 | |
4 | 62.7 | 0.713 | 64.3 | 0.727 | 65.1 | 0.736 | |
P5 | 1 | 64.3 | 0.678 | 63.5 | 0.716 | 64.3 | 0.731 |
2.3 | 64.3 | 0.695 | 64.3 | 0.736 | 64.3 | 0.728 | |
4 | 62.7 | 0.708 | 65.1 | 0.718 | 65.1 | 0.732 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, W.; Schauberger, G.; Wang, J.; Geng, J.; Wang, G.; Meng, J. Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant. Atmosphere 2021, 12, 371. https://doi.org/10.3390/atmos12030371
Zhang Y, Yang W, Schauberger G, Wang J, Geng J, Wang G, Meng J. Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant. Atmosphere. 2021; 12(3):371. https://doi.org/10.3390/atmos12030371
Chicago/Turabian StyleZhang, Yan, Weihua Yang, Günther Schauberger, Jianzhuang Wang, Jing Geng, Gen Wang, and Jie Meng. 2021. "Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant" Atmosphere 12, no. 3: 371. https://doi.org/10.3390/atmos12030371
APA StyleZhang, Y., Yang, W., Schauberger, G., Wang, J., Geng, J., Wang, G., & Meng, J. (2021). Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant. Atmosphere, 12(3), 371. https://doi.org/10.3390/atmos12030371