Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques
Abstract
:1. Introduction
2. Methodology
2.1. Computation of Ionospheric TEC from GPS-IGS Station
2.2. Computation of AGWs from the SABER Temperature Profile
2.3. AGW Detection from GPS-TEC
2.4. Computation Process of Energetic Particle Bursts
2.5. Analysis of Swarm Satellite Data
Magnetic Field and Plasma Data Structure in Swarm Satellite
- I. MASS Algorithm:
- II. NeLOG Algorithm:
- III. NeSTAD Algorithm:
3. Results
3.1. Ionospheric Perturbation Observed from GPS-TEC
3.2. AGW Anomalies Observed SABER Satellite
3.3. AGW Anomalies from GPS-TEC
3.4. Anomalous Energetic Particle Burst (PB)
3.5. Outcomes from the Swarm Satellite
4. Discussion
- At first, regarding ground-based observation, we use ionospheric GPS-TEC information from two IGS station DYNG (Greece) and IZMI (Turkey) which are close to the EQ epicenter. We compute the diurnal TEC variation and, to detect the pre-seismic anomaly in it, we use the method of statistical upper and lower bounds. The pre-seismic enhancement starts around 8–9 days before the EQ, and the maximum enhancement occurred one day before the mainshock for both DYNG and IZMI stations. The maximum anomaly in TEC is found of 4.5 TECU for DYNG station, which is comparatively farther from the epicenter, while the maximum change is found to be 2.5 TECU for IZMI.
- For computing the AGW associated with the EQ, we use both direct and indirect methods. In the direct method, the AGW activity is observed through the space-based satellite SABER/TIMED. We computed the potential energy associated with the AGW from the atmospheric temperature profile as recorded from SABER. A significant enhancement in associated with AGW is observed 6–8 days (23 to 25 October 2020) before the EQ. The enhancement of is found to be at an altitude range of around 46–48 km. From the spatial variation of AGW, we observe the maximum enhancement in on 24 October 2020, at 47 km altitude with a radius of 500 km in the northeast direction of the EQ epicenter.
- To validate the outcomes of SABER, we use another indirect method, where wave-like structures are investigated in the small scale fluctuations from GPS-TEC using a filtration method. The wave-like structures of periodicity 65–110 min are obtained from the wavelet analysis of small-scale fluctuations for both of the stations. We observe the most intense wave-like structure on 19 October 2020, for both stations. The AGW enhancement in the wavelet spectrum is much concentrated for the DYNG station, whereas, for the IZMI station, it is scattered around a period.In space-based observation, we use two satellites, namely NOAA-15 and Swarm, to investigate ionospheric and magnetospheric irregularities associated with the EQ.
- Based on the NOAA-15 satellite particle database, we computed radiation belt energetic particle counts associated with the EQ. By eliminating SAA and considering geomagnetic quiet conditions, we present the number of particle bursts. We observe a significant number of particle counts on 10 and 4 days before the EQ.
- We examine the anomalies in the magnetic field, electron temperature, and electron density profile using Swarm satellite magnetic field and plasma information. In the computation, we use MASS, NeLOG, and NeSTAD algorithms (demonstrated in the methodology section). We observe the anomalous behavior in the X component of the magnetic field by using the MASS algorithm. The anomalous track number is 15 (SAT-C), and the fluctuation in the magnetic field is observed one day before the EQ. This fluctuation was observed at the afternoon period (12:00 p.m.–1:00 p.m. UT) and around −15 latitude from the epicenter. We also observe the anomaly in the time derivative of electron density and electron temperature, around the same latitude and at the same period as derived from the NeLOG algorithm. In addition, by using the NeSTAD algorithm, we observed a similar anomaly in the strength of the outliers. For this case, we detected the mild outliers having a k value of 1.5, associated with this EQ. We recognize 0.0423% of outliers in the anomalous tracks.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.A.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Bowman, D.D.; Ouillon, G.; Sammis, C.G.; Sornette, A.; Sornette, D. An observational test of the critical earthquake concept. J. Geophys. Res. 1998, 103, 24359–24372. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. Lab. 1996, 43, 169–180. [Google Scholar]
- Hayakawa, M. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes; Terra Scientific Publishing Company: Tokyo, Japan, 1999; p. 996. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M.; Ondoh, T.; Kawai, E. Precursory effects in the subionospheric VLF signals for the Kobe earthquake. Phys. Earth Planet Inter. 1998, 105, 239–248. [Google Scholar] [CrossRef]
- Clilverd, M.A.; Rodger, C.J.; Thomson, N.R. Investigating seismoionospheric effects on a long subionospheric path. J. Geophys. Res. 1999, 104, 28171–28179. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.A.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Rozhnoi, A.; Solovieva, M.S.; Molchanov, O.A.; Hayakawa, M. Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Phys. Chem. Earth 2004, 29, 89–598. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Saha, M.; Khan, R.; Mandai, S.; Acharyya, K.; Saha, R. Possible detection of ionospheric disturbances during Sumatra-Andaman Islands earthquakes in December. Indian J. Radio Space Phys. 2005, 34, 314–317. [Google Scholar]
- Lastovica, J. Forcing of the ionosphere by waves from below. J. Atmos. Sol-Terr. Phys. 2006, 3–5, 479–497. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Molchanov, O.A.; Solovieva, M.; Gladyshev, V.; Akentieva, O.; Berthelier, J.J.; Parrot, M.; Lefeuvre, F.; Biagi, P.F.; Castellana, L.; et al. Possible seismo–ionosphere perturbations revealed by VLF signals collected on ground and on a satellite. Nat. Haz. Earth Syst. Sci. 2007, 7, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Balasis, G.; Mandea, M. Can electromagnetic disturbances related to the recent great earthquakes be detected by satellite magnetometers? Tectonophysics 2007, 431, 173–195. [Google Scholar] [CrossRef]
- Korepanov, V.; Hayakawa, M.; Yampolski, Y.; Lizunov, G. AGW as a seismo–ionospheric coupling responsible agent. Phys. Chem. Earth Parts A/B/C 2009, 34, 485–495. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Sasmal, S.; Chakrabarti, S. Ionospheric anomaly due to seismic activities-II: Possible evidence from D-layer preparation and disappearance times. Nat. Haz. Earth Syst. Sci. 2010, 10, 1751–1757. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Romanov, A. Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by joined satellite and ground observations: Preliminary results. Earthq. Sci. 2011, 24, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, G.; Vassiliadis, E.; Pulinets, S. Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes. Ann. Geophys. 2012, 55, 21–36. [Google Scholar]
- De Santis, A.; De Franceschi, G.; Spogli, L.; Perrone, L.; Alfonsi, L.; Qamili, E.; Cianchini, G.; Di Giovambattista, R.; Salvi, S.; Filippi, E.; et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys. Chem. Earth Parts A/B/C 2015, 85–86, 17–33. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Balasis, G.; Pavón-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, G.; Spyroglou, I.; Rigas, A.; Preka-Papadema, P.; Mavromichalaki, H.; Kiosses, I. The sun as a significant agent provoking earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 287–333. [Google Scholar] [CrossRef]
- Yang, S.S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Yang, S.S.; Hayakawa, M. Gravity Wave Activity in the Stratosphere before the 2011 Tohoku Earthquake as the Mechanism of Lithosphere-atmosphere-ionosphere Coupling. Entropy 2020, 22, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K. Comparative study of charged particle precipitation from Van Allen radiation belts as observed by NOAA satellites during a land earthquake and an ocean earthquake. Adv. Space Res. 2019, 64, 719–732. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Lin, C.H.; Tsai, H.F.; Chen, C.H.; Kamogawa, M. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake. J. Geophys. Res. Space Phys. 2011, 116, A06319. [Google Scholar]
- Maruyama, T.; Tsugawa, T.; Kato, H.; Saito, A.; Otsuka, Y.; Nishioka, M. Ionospheric multiple stratifications and irregularities induced by the 2011 of the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.A.; Hayakawa, M. Generation of ULF electromagnetic emissions by microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Tsai, H.F. Variations of ionospheric total electron content during the Chi–Chi Earthquake. Geophys. Res. Lett. 2001, 28, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre–earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Schekotov, A.; Molchanov, O.; Hattori, K.; Fedorov, E.; Gladyshev, V.A.; Belyaev, G.G.; Chebrov, V.; Sinitsin, V.; Gordeev, E.; Hayakawa, M. Seismo-ionospheric depression of the ULF geomagnetic fluctuations at Kamchatka and Japan. Phys. Chem. Earth 2006, 31, 313–318. [Google Scholar] [CrossRef]
- Ray, S.; Chakrabarti, S.K.; Mondal, S.K.; Sasmal, S. Ionospheric anomaly due to seismic activities-III: Correlation between night time VLF amplitude fluctuations and effective magnitudes of earthquakes in Indian sub-continent. Nat. Haz. Earth Syst. Sci. 2011, 11, 2699–2704. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Chakrabarti, S.K.; Sasmal, S. Precursory effects in the nighttime VLF signal amplitude for the 18th January, 2011 Pakistan earthquake. Indian J. Phys. 2012, 86, 85–88. [Google Scholar] [CrossRef]
- Sasmal, S.; Chakrabarti, S.K.; Ray, S. Unusual behavior of VLF signals observed from Sitapur during the Earthquake at Honshu Japan on 11 March, 2011. Indian J. Phys. 2014, 88, 103–1019. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Ghosh, S.; Palit, S.; Chakrabarti, S.K.; Ray, S. Numerical modeling of possible lower ionospheric anomalies associated with Nepal earthquake in May, 2015. Adv. Space Res. 2017, 60, 1787–1796. [Google Scholar] [CrossRef]
- Ghosh, S.; Sasmal, S.; Midya, S.; Chakrabarti, S. Unusual change in critical frequency of f2 layer during and prior to earthquakes. Open J. Earthq. Res. 2017, 6, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.; Chae, J.S.; Lee, E.; Parrot, M. Fluctuations in the ionosphere related to Honshu Twin Large Earthquakes of September 2004 observed by the DEMETER and CHAMP satellites. J. Atmos. Sol-Terr. Phys. 2014, 121, 110–122. [Google Scholar] [CrossRef]
- Ryu, K.; Parrot, M.; Kim, S.G.; Jeong, K.S.; Chae, J.S.; Pulinets, S.; Oyama, K.I. Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008. J. Geophys. Res. Space Phys. 2014, 12, 10–305. [Google Scholar]
- Pulinets, S.; Ouzounov, D.; Davydenko, D.; Petrukhin, A. Multiparameter monitoring of short-term earthquake precursors and its physical basis. Implementation in the Kamchatka region. In Proceedings of the E3S Web of Conferences Solar-Terrestrial Relations and Physics of Earthquakes Precursors, Paratunka, Russia, 29 August–2 September 2016; Volume 11. [Google Scholar]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake. Front. Earth Sci. 2020, 8, 478. [Google Scholar] [CrossRef]
- Chetia, T.; Sharma, G.; Dey, C.; Raju, P.L.N. Multi-Parametric Approach for Earthquake Precursor Detection in Assam Valley (Eastern Himalaya, India) using Satellite and Ground Observation Data. Geotecton 2020, 54, 83–96. [Google Scholar] [CrossRef]
- Piersanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’Angelo, G. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Garner, T.; Gaussiran, T., II; Tolman, B.W.; Harris, R.B.; Calfas, R.S.; Gallagher, H. Total electron content measurements in ionospheric physics. Adv. Space Res. 2008, 42, 720–726. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Hattori, K. Temporaland spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra–Andaman. Earthq. J. Geophys. Res. 2010, 115, A09312. [Google Scholar]
- Zhao, B.; Wang, M.; Yu, T.; Wan, W.X.; Lei, J.H.; Liu, L.B.; Ning, B.Q. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake? J. Geophys. Res. Atmos. 2008, 113, A11304. [Google Scholar] [CrossRef]
- Jhuang, H.K.; Ho, Y.Y.; Kakinami, Y.; Liu, J.Y.; Oyama, K.I.; Parrot, M.; Hattori, K.; Nishihash, M.; Zhang, D. Seismoionospheric anomalies of the GPS–TEC appear before the 12 May 2008 magnitude 8.0 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3579–3587. [Google Scholar] [CrossRef]
- Kakinami, Y.; Liu, J.Y.; Tsai, L.C.; Oyama, K.I. Ionospheric electron content anomalies detected by a FORMOSAT–3/COSMIC empirical model before and after the Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3571–3578. [Google Scholar] [CrossRef]
- Yan, X.X.; Shan, X.J.; Cao, J.B.; Tang, J.; Wang, F.F. Seismoionospheric anomalies observed before Wenchuan earthquake using GPS and DEMETER data. Seismol. Geol. 2012, 34, 160–171. [Google Scholar]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Electron and ion density variations before strong earthquakes(M > 6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci. 2010, 10, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Le, H.; Chen, Y.I.; Chen, C.H.; Liu, L.; Wan, W.; Su, Y.Z.; Sun, Y.Y.; Lin, C.H.; Chen, M.Q. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. 2011, 116, A04302. [Google Scholar]
- Karia, S.; Sarkar, S.; Pathak, K. Analysis of GPS–based TEC and electron density by the DEMETER satellite before the Sumatra earthquake on 30 September 2009. Int. J. Remote Sens. 2012, 33, 5119–5134. [Google Scholar] [CrossRef]
- Ho, Y.Y.; Jhuang, H.K.; Su, Y.C.; Liu, J.Y. Seismoionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M8.8 Chile earthquake. Adv. Space Res. 2013, 51, 2309–2315. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Novikov, V.; Shen, X. Variations of ionospheric plasma at different altitudes before the 2005 Sumatra Indonesia Ms7.2 earthquake. J. Geophys. Res. Space 2016, 21, 9179–9187. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Cao, J.; Battiston, R.; Liuiuan, L.; Yuduan, N.; Liu, W.; Zhima, Z.; Wang, L.; Wray, D.M. Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M 7.7 south of Java earthquake. Ann. Geophys. 2017, 35, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Vita, A.N.; Putra, S.Y.S.; Subakti, H.; Muslim, B. Identification of ionospheric GPS TEC anomalies prior to earthquake in Sumatra between 2007–2012 using correlation technique. In Proceedings of the AIP Conference Proceedings, 25 July 2017; Volume 1857, p. 040007. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A. Ionospheric Precursors observed in TEC due to Earthquake of Tamenglong on 03 January 2016. Curr. Sci. 2017, 113, 795–801. [Google Scholar] [CrossRef]
- Sharma, G.; Mohanty, S.; Kannaujiya, S. Ionospheric TEC Modelling for Earthquake Precursor Studies in Himalaya. Quat. Int. 2017, 462, 65–74. [Google Scholar] [CrossRef]
- Komjathy, A.; Galvan, D.A.; Stephens, P.; Butala, M.D.; Akopian, V.; Wilson, B.; Verkhoglyadova, O.; Mannucci, A.J.; Hickey, M. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth Planets Space 2012, 64, 24. [Google Scholar] [CrossRef] [Green Version]
- Amin, M. Influence of Lightning on Electron Density Variation in the Ionosphere Using WWLLN Lightning Data and GPS Data. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- Oikonomou, C.; Haralambous, H.; Muslim, B. Investigation of ionospheric TEC precursors related to the M7.8 Nepal and M8.3 Chile earthquakes in 2015 based on spectral and statistical analysis. Nat. Hazards 2016, 83, 97–116. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.; Korepanov, V. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. J. Atmos. Electr. 2011, 31, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Asano, T.; Rozhnoi, A.; Solovieva, M. VLF/LF Sounding of Ionospheric Perturbations and Possible Association with Earthquakes. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Ed.; American Geophysical Union: Washington, DC, USA, 2018; pp. 277–304. [Google Scholar]
- Garmash, S.V.; Linkov, E.M.; Petrova, L.N.; Shved, G.N. Excitation of atmospheric oscillations by seismogravitational vibrations of the earth. Fiz. Atmos. Okeana 1989, 35, 1290–1299. [Google Scholar]
- Lin’kov, E.M.; Petrova, L.N.; Zuroshvili, D.D. Seismogravitational vibrations of the earth and related disturbances of the atmosphere. Dokl. Akad. Nauk SSSR 1989, 306, 315–317. [Google Scholar]
- Shalimov, S.L. Lithosphere–ionosphere relationship: A new way to predict earthquakes? Intern. Geosci. Newsmag. 1992, 15, 252–254. [Google Scholar] [CrossRef]
- Murayama, Y.; Tsuda, T.; Fukao, S. Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar. J. Geophys. Res. Atmos. 1994, 99, 23057–23069. [Google Scholar] [CrossRef]
- Dhaka, S.K.; Devrajan, P.K.; Shibagaki, Y.; Choudhary, R.K.; Fukao, S. Indian MST radar observations of gravity wave activities associated with tropical convection. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1631–1642. [Google Scholar] [CrossRef]
- Dhaka, S.K.; Choudhary, R.K.; Malik, S.; Shibagaki, Y.; Yamanaka, M.D.; Fukao, S. Observable signatures of a convectively generated wave field over the tropics using Indian MST radar at Gadanki (13.5∘ N, 79.2∘ E). Geophys. Res. Lett. 2002, 29, 1872. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res. Atmos. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, J.; Liu, L.; Wan, W. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J. Geo-Phys. Res. Atmos. 2012, 117, D21101. [Google Scholar] [CrossRef]
- Yang, S.S.; Pan, C.J.; Das, U.; Lai, H.C. Analysis of synoptic scale controlling factors in the distribution of gravity wave potential energy. J. Atmos. Sol.-Terr. Phys. 2015, 135, 126–135. [Google Scholar] [CrossRef]
- Nakamura, T.; Korepanov, V.; Kasahara, Y.; Hobara, Y.; Hayakawa, M. An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations. J. Atmos. Electr. 2013, 33, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Kundu, S.; Chowdhury, S.; Ghosh, S.; Yang, S.S.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K.; Sasmal, S. Contaminated effect of Geomagnetic storm on pre-seismic atmospheric and ionospheric anomalies during Imphal earthquake. Open J. Eearthq. Res. 2020, 9, 1–3. [Google Scholar]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A. Seismogenic effects in ULF/ELF/VLF electromagnetic waves. Int. J. Electron. Appl. Res. 2019, 6, 1–86. [Google Scholar] [CrossRef]
- Galper, A.M.; Koldashov, S.V.; Murashov, A.M. Numerical Simulation of Physical Processes at the Atmospheric Boundary of the Radiation Belt. Cosm. Res. 2000, 38, 102–107. [Google Scholar]
- Aleshina, M.E.; Voronov, S.A.; Galper, A.M. On the Relationship Between the Locations of Earthquakes Centers and High-energy Particles Precipitation AreasUnder the Radiation Belt. Cosm. Res. 1992, 30, 79–82. [Google Scholar]
- Boskova, J.; Smilauer, J.; Triska, P.; Kudela, K. Anomalous behavior of plasma parameters as observed by Intercosmos 24 satellites prior to the iranian earthquake of 20 June 1990. Stud. Geophys. Geod. 1994, 38, 213–220. [Google Scholar] [CrossRef]
- Aleksandrin, S.Y.; Galper, A.M.; Koldashov, S.V. Study of Local Radiation Belt Perturbations in the Satellite Experiments ARINA and VSPLESK. In Proceedings of the 31st National Conference on Cosmic Rays, Moscow State University, Moscow, Russia, 7–15 July 2010. [Google Scholar]
- Voronov, S.A.; Galper, A.M.; Koldashov, S.V. Registration of Sporadic Increase of High Energy Particle Flux near Brazilian Anomaly Region. Proc. ICRC 1987, 4, 451–452. [Google Scholar]
- Voronov, S.A.; Galper, A.M.; Koldashov, S.V. Observation of high-energy charged particle flux increases in SAA region in 10 September 1985. Cosm. Res. 1989, 27, 629–631. [Google Scholar]
- Aleksandrin, S.Y.; Galper, A.M.; Grishantzeva, L.A.; Koldashov, S.V.; Maslennikov, L.V.; Murashov, A.M.; Picozza, P.; Sgrigna, V.; Voronov, S.A. High-energy charged particle bursts in the near-Earth space as earthquake precursors. Ann. Geophys. 2003, 21, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Fidani, C.; Battiston, R. Analysis of NOAA particle data and correlations to seismic activity. Nat. Hazards Earth Syst. Sci. 2008, 8, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Battiston, R.; Vitale, V. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nucl. Phys. Proc. Suppl. 2013, 243, 249–257. [Google Scholar] [CrossRef]
- Obara, T.; Miyoshi, Y.; Morioka, A. Large enhancement of the outer belt electrons during magnetic storms. Earth Planet Space 2001, 53, 1163–1170. [Google Scholar] [CrossRef] [Green Version]
- Soraas, F.; Aarsnes, K.; Lundblad, J.A.; Evans, D.S. Enhanced Pitch Angle Scattering of Protons at Mid-Latitudes During Geomagnetic Storms. Phys. Chem. Earth C 1999, 24, 281–292. [Google Scholar] [CrossRef]
- Walt, M.; Voss, H.D.; Pickett, J. Electron precipitation coincident with ELF/VLF wave bursts. J. Geophys. Res. 2002, 107, A8. [Google Scholar] [CrossRef]
- Bortnik, J.; Marshall, S.A.; Bell, T.F. Temporal signatures of radiation belt electron precipitation induced by lightning generated MR whistlerwaves. J. Geophys. Res. 2006, 111, A02204. [Google Scholar]
- Xuhui, S.; Shaoxie, X.; Yun, W. General proposal for China Seismo-Electromagnetic Satellite Project, Early Warming and Monitoring Earthquake by Using Electromagnetism Detecting Satellite. In Proceedings of the International Workshop Proceedings, Jakarta, Indonesial, 25–27 July 2007; Volume 14, pp. 25–27. [Google Scholar]
- Bakaldin, A.V.; Batishchev, A.G.; Voronov, S.A.; Galper, A.M.; Grishantseva, L.A.; Koldashov, S.V.; Naumov, P.Y.; Chesnokov, V.Y.; Shilov, V.A. Satellite Experiment ARINA for Studying Seismic Effects in the High-Energy Particle Fluxes in the Earth’s Magnetosphere. Cosm. Res. 2007, 45, 445–448. [Google Scholar] [CrossRef]
- Fidani, C.; Battiston, R.; Burger, W.J. A study of the correlation between earthquakes and NOAA satellite energetic particle bursts. Remote Sens. 2010, 2, 2170–2184. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Jin, S.; Piscini, A.; Campuzano, S.A. Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence. Pure Appl. Geophys. 2020, 177, 305–319. [Google Scholar] [CrossRef]
- Cetin, K.O.; Mylonakis, G.; Sextos, A.; Stewart, J.P. Seismological and Engineering Effects of the M 7.0 Samos Island (Aegean Sea) Earthquake. 2020. Available online: http://www.geerassociation.org/component/geer_reports/?view=geerreports&id=96&layout=build (accessed on 9 August 2021). [CrossRef]
- Kalogeras, I.; Melis, N.S.; Kalligeris, N. The Earthquake of October 30th, 2020 at Samos, Eastern Aegean Sea, Greece. Available online: https://accelnet.gein.noa.gr/Reports/Samos_Preliminary_Report_EN.pdf (accessed on 16 February 2021).
- Seemala, G.K.; Valladares, C.E. Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 2011, 46, RS5019. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Edwards, C.D. A new method for monitoring the Earths ionospheric total electron content using the GPS global network. In Proceedings of the Institute of Navigation, Salt Lake City, UT, USA, 22–24 September 1993; pp. 1323–1332. [Google Scholar]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.J. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Langley, R.; Fedrizzi, M.; Paula, E.; Santos, M.; Komjathy, A. Mapping the low latitude ionosphere with GPS. GPS World 2002, 13, 41–46. [Google Scholar]
- Rama Rao, P.V.S.; Niranjan, R.; Prasad, D.S.S.V.V.D.; Seemala, G.K.; Uma, G. On the validity of the ionospheric pierce point (IPP) altitude of 350km in the Indian equatorial and low-latitude sector. Ann. Geophys. 2006, 24, 2159–2168. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.; Sarkar, S.; Mukherjee, S.; Gwal, A.K. Study of ionospheric variability during geomagnetic storms. J. Ind. Geophys. Union 2010, 14, 47–56. [Google Scholar]
- Ayomide, O.O.; Emmanuel, A.A. Geomagnetic storm main phase effect on the equatorial ionosphere over Ile–Ife as measured from GPS observations. Sci. Afr. 2020, 9, e00472. [Google Scholar]
- Davis, C.J.; Wild, M.N.; Lockwood, M.; Tulunay, Y.K. Ionospheric and geomagnetic responses to changes in IMF BZ: A superposed epoch study. Annales Geophysicae. Eur. Geosci. Union 1997, 15, 217–230. [Google Scholar]
- Rawat, R.; Alex, S.; Lakhina, G.S. Geomagnetic storm characteristics under varied interplanetary conditions. Bull. Astr. Soc. India 2007, 35, 499–509. [Google Scholar]
- Du, A.M.; Tsurutani, B.T.; Sun, W. Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs. J. Geophys. Res. 2008, 113, A10214. [Google Scholar] [CrossRef] [Green Version]
- Astafyeva, E. Effects of strong IMF Bz southward events on the equatorial and mid-latitude ionosphere. Ann. Geophys. 2009, 27, 1175–1187. [Google Scholar] [CrossRef] [Green Version]
- Rathore, B.S.; Gupta, D.C.; Parashar, K.K. Relation between Solar Wind Parameter and Geomagnetic Storm Condition during Cycle-23. Int. J. Geosci. 2014, 5, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Rama, B.V.; Sarma, M.S.S.R.K.N.; Prasad, D.S.S.V.D. IMF BZ and its Variations with the Geomagnetic Parameters a Comparative Study at a Low Latitude Station, Visakhapatnam. Int. J. New Technol. Res. (IJNTR) 2016, 2, 28–32. [Google Scholar]
- Singh, S.; Panday, A.C.; Singh, K.; Mishra, A.P. Effect of geomagnetic storms and their association with solar wind velocity and IMF during solar cycle 23 and 24. Int. J. Pure Appl. Phys. 2017, 13, 35–43. [Google Scholar]
- Silwal, A.; Gautam, S.P.; Chaudhary, S.; Khanal, M.; Joshi, S.; Dangaura, S.; Adhikari, B. Study of Solar Wind Parameters During Geomagnetic Storm of 26th August 2018 and 28th September 2017. Thai J. Phys. 2021, 38, 54–68. [Google Scholar]
- Klotz, S.; Johnson, N.L. (Eds.) Encyclopedia of Statistical Sciences; John Wiley and Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.J., Jr.; Esplin, R.W. An overview of the SABER experiment and preliminary calibration results. In Proceedings of the SPIE International Society for Optical Engineering, 1999; Volume 3756, pp. 277–288. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3756/1/Overview-of-the-SABER-experiment-and-preliminary-calibration-results/10.1117/12.366382.short?SSO=1 (accessed on 9 August 2021).
- Remsberg, E.E.; Marshall, B.T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G.S.; Martin-Torres, J.; Mlynczak, M.G.; Russell, J.M., III; Smith, A.K.; Zhao, Y.; et al. Assessment of the quality of the version 1.07 temperature–versus–pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. 2008, 113, D17101. [Google Scholar] [CrossRef]
- Preusse, P.; Dörnbrack, A.; Eckermann, S.D.; Riese, M.; Schaeler, B.; Bacmeister, J.; Broutman, D.; Grossmann, K.U. Space based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method and a case study. J. Geophys. Res. 2002, 107, 8178. [Google Scholar] [CrossRef]
- Preusse, P.; Eckermann, S.D.; Ern, M.; Oberheide, J.; Picard, R.H.; Roble, R.G.; Riese, M.; Russell, J.M.; Mlynczak, M.G. Global ray tracing simulations of the SABER gravity wave climatology. J. Geophys. Res. 2009, 114, D08126. [Google Scholar] [CrossRef]
- Fetzer, E.J.; Gille, J.C. Gravity wave variation in LIMS temperatures. Part I: Variability and comparison with background winds, J. Atmos. Sci. 1994, 51, 2461–2483. [Google Scholar]
- Yan, X.; Arnold, N.; Remedios, J. Global observations of gravity waves from High Resolution Dynamics Limb Sounder temperature measurements:A yearlong record of temperature amplitude and vertical wavelength. J. Geophys. Res. 2010, 115, D10113. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, C.; Engl, S.L.; Immel, T.J.; Chang, L.C. Gravity wave variations during elevated stratopause events using SABER observations. J. Geophys. Res. Atmos. 2013, 118, 5297–5306. [Google Scholar] [CrossRef]
- Shuai, J.; Zhang, S.D.; Huang, C.M.; Huang, C.; YI, F.; Huang, K.; Gan, Q.; Gong, Y. Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations. Sci. China Tech. Sci. 2014, 57, 998–1009. [Google Scholar] [CrossRef]
- Thurairajah, B.; Bailey, S.M.; Cullens, C.Y.; Hervig, M.E.; Russell, J.M. Gravity wave activity during recent stratospheric sudden warming events from SOFIE temperature measurements. J. Geophys. Res. Atmos. 2014, 119, 8091–8103. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Xu, J.; Garcia, R.R.; Russell, J.M.; Mlynczak, M.G.; Wu, D.L.; Nakamura, T. Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res. Atmos. 2017, 122, 6231–6249. [Google Scholar]
- Liu, X.; Xu, J.; Yue, J.; Vadas, S.L.; Becker, E. Orographic primary and secondary gravity waves in the middle atmosphere from 16–year SABER observations. Geophys. Res. Lett. 2019, 46, 4512–4522. [Google Scholar] [CrossRef]
- Carbone, V.; Piersanti, M.; Materassi, M.; Battiston, R.; Lepreti, F.; Ubertini, P. A mathematical model of lithosphere–atmosphere coupling for seismic events. Sci. Rep. 2021, 11, 8682. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Savitzky, A. A Historic Collaboration. Anal. Chem. 1989, 61, 921A–923A. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994; Volume XVII, p. 582. [Google Scholar]
- Tamer, A. On the SID duration. Ap & SS 1991, 157A, 181. [Google Scholar]
Full Form | Acronym |
---|---|
Earthquake | EQ |
Lithosphere–Atmosphere–Ionosphere Coupling | LAIC |
Atmospheric Gravity Wave | AGW |
Total Electron Content | TEC |
Low Earth Orbit | LEO |
National Oceanic and Atmospheric Administration | NOAA |
Sounding of the Atmosphere using Broadband Emission Radiometry | SABER |
Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics | TIMED |
Count Rate | CR |
South Atlantic Anomaly | SAA |
Particle Bursts | PB |
Very-Low-Frequency | VLF |
Low-Frequency | LF |
Ultra-Low-Frequency | ULF |
Detection of Electromagnetic Emissions Transmitted from Earthquake Regions | DEMETER |
CHAllenging Minisatellite Payload | CHAMP |
Global Positioning System | GPS |
Outgoing Longwave Infrared Radiation | OLR |
Atmospheric Chemical Potential | ACP |
Frequency Magnitude Relationship | FMR |
Global ionosphere map | GIM |
Traveling ionospheric disturbances | TIDs |
Global Assimilative Ionospheric Model | GAIM |
Gravity Wave | GW |
Middle and upper environment | MU |
Mesosphere–Stratosphere–Troposphere | MST |
Van Allen Radiation Belt | VAB |
National Aeronautics and Space Administration | NASA |
Polar Operational Environmental Satellites | POES |
Space Environment Monitor | SEM |
China Seismo-Electromagnetic Satellite | CSES |
EQ preparation zone | EPZ |
Critical Zone | CZ |
Sudden Ionospheric Disturbance | SID |
Interplanetary Magnetic Fields | IMF-Bz |
Vertical Total Electron Content | VTEC |
Interquartile Range | IQR |
Upper Bound | UB |
Lower Bound | LB |
Least Square Fit | LSF |
Savitzky–Golay filtering | sgolayfilt |
Maximum Power of the Spectrum | MPS |
Cone of Influence | COI |
Medium Energy Proton Electron Detector | MEPED |
International Geomagnetic Reference Field | IGRF |
Langmuir Probe | LP |
Thermal Ion Imager | TII |
Absolute Scalar Magnetometer | ASM |
Vector Field Magnetometer | VFM |
Thermal Ion Imager | TII |
North, East, Center | NEC |
Electron Spin Resonance | ESR |
Magnetic Swarm Anomaly Detection by Spline Analysis | MASS |
Ne Single Track Anomaly Detection | NeSTAD |
Surface Latent Heat Flux | SLHF |
Relative Humidity | RH |
Sudden Stratospheric Warming | SSW |
Solar Occultation for Ice Experiment | SOFIE |
Receiver Independent Exchange Format | RINEX |
Magnetic Swarm Anomaly Detection by Spline Analysis | MASS |
American Association of Variable 645 Star Observers | AAVSO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasmal, S.; Chowdhury, S.; Kundu, S.; Politis, D.Z.; Potirakis, S.M.; Balasis, G.; Hayakawa, M.; Chakrabarti, S.K. Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere 2021, 12, 1059. https://doi.org/10.3390/atmos12081059
Sasmal S, Chowdhury S, Kundu S, Politis DZ, Potirakis SM, Balasis G, Hayakawa M, Chakrabarti SK. Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere. 2021; 12(8):1059. https://doi.org/10.3390/atmos12081059
Chicago/Turabian StyleSasmal, Sudipta, Swati Chowdhury, Subrata Kundu, Dimitrios Z. Politis, Stelios M. Potirakis, Georgios Balasis, Masashi Hayakawa, and Sandip K. Chakrabarti. 2021. "Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques" Atmosphere 12, no. 8: 1059. https://doi.org/10.3390/atmos12081059
APA StyleSasmal, S., Chowdhury, S., Kundu, S., Politis, D. Z., Potirakis, S. M., Balasis, G., Hayakawa, M., & Chakrabarti, S. K. (2021). Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere, 12(8), 1059. https://doi.org/10.3390/atmos12081059