The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions
Abstract
:1. Introduction
A Contemporary Scientific and Social Problem: Τhe Challenge of Extreme Weather Events
2. Solar–Atmospheric Weather Relationships
2.1. Extreme Weather Events: Anthropogenic versus Physical Agents
2.2. Violent Sun and Disturbed Interplanetary Space
2.3. Solar Particle Radiation and Atmospheric Weather Relationships
2.3.1. Solar Energetic Particles
2.3.2. Solar and Geomagnetic Activity
2.4. March 2012 Temperature Anomaly in Northeast America
3. Data
4. Observations
4.1. The Historic March 2012 Heat Wave
4.1.1. Solar and Interplanetary Configuration in March 2012
4.1.2. Magnetospheric and Ionospheric Disturbances in March 2012
4.1.3. Atmospheric Variations in March 2012
4.2. March 2015: An Event Similar to the March 2012 Event
4.2.1. Solar and Interplanetary Conditions during the 2015 Heat Wave
4.2.2. Atmospheric Weather during the March 2015 Heat Wave
4.3. March 1910: An Earlier Comparable to the March 2012 Heat Wave
5. Discussion
5.1. Unusual Solar/Space Activity before March 1910, March 2012 and March 2015 Heat Waves
5.2. Solar–Space–Atmospheric Relationships in March 2012
6. Summary of Observations and Conclusions
6.1. Space Observations
6.2. Meteorological Observations
6.3. Solar Activity and Heat Wave in March 1910, 2012 and 2015
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary and Acronyms
Appendix A
# Storm | Dst (nT) | Time (Year) | Month/ Day | # GLE | SOHO (>0.5 GeV)Month/Day | ΔΤM°C | ACE/ EPAM/P8 >log Jp (p/cm2.s.sr.MeV) |
---|---|---|---|---|---|---|---|
1 | −205 | 1998 | 5/4 | 56 | 5/6 | 18.5 | 2 |
2 | −155 | 1998 | 8/27 | 58 | 7 | 3 | |
3 | −207 | 1998 | 9/25 | 12.5 | 3 | ||
4 | −173 | 1999 | 9/22 | 13 | 2 | ||
5 | −237 | 1999 | 10/2 | 15 | −1 | ||
6 | −288 | 2000 | 4/7 | 7 | 2 | ||
7 | −301 | 2000 | 7/16 | 59 | 7/14 | 5.5 | 4 |
8 | −235 | 2000 | 8/12 | 7 | 2 | ||
9 | −201 | 2000 | 9/17 | 13 | 2 | ||
10 | −182 | 2000 | 10/5 | 11 | −1 | ||
11 | −159 | 2000 | 11/6 | 11/9 | 4 | 3 | |
12 | −387 | 2001 | 3/31 | 16 | 2 | ||
13 | −271 | 2001 | 4/11 | 6061 | 4/154/18 | 10 | 3 |
14 | −187 | 2001 | 10/21 | 8 | 2 | ||
15 | −157 | 2001 | 10/28 | 11 | 2 | ||
16 | −292 | 2001 | 11/6 | 62 | 11/4 | 5 | 4 |
17 | −221 | 2001 | 11/24 | 11/23 | 10 | 4 | |
18 | −182 | 2002 | 64 | 8/25 | 6 | 3 | |
19 | −146 | 2002 | 10/1 | 12 | −2 | ||
20 | −353 | 2003 | 10/30 | 6566 | 10/2829/10 | 11 | 4 |
21 | −422 | 2003 | 11/20 | 67 | 11/ 2 (5) | 6 | 2 |
22 | −170 | 2004 | 7/27 | 5 | 3 | ||
23 | −374 | 2004 | 11/8 | 11/10 | 12 | 2 | |
24 | −247 | 2005 | 5/15 | 15 | 4 | ||
25 | −184 | 2005 | 8/24 | 8 | 3 | ||
26 | −162 | 2006 | 12/15 | 70 | 12/13 | 19 | 5 |
27 | −145 | 2012 | 3/9 | 3/7 & 13 | 30 | 5 | |
28 | −222 | 2015 | 3/17 | 3/7-9 | 32 | 2 |
References
- Patsourakos, S.; Georgoulis, M.K.; Vourlidas, A.; Nindos, A.; Sarris, T.; Anagnostopoulos, G.; Anastasiadis, A.; Chintzoglou, G.; Daglis, I.A.; Gontikakis, C.; et al. The major geoeffective Solar eruptions of 2012 March 7: Comprehensive Sun-to-Earth analysis. Astrophys. J. 2016, 817, 14. [Google Scholar] [CrossRef]
- Borth, S.; Castro, R.; Birk, K. The Historic March 2012 Heat Wave: A Meteorological Retrospective. Available online: https://www.weather.gov/media/lot/events/March2012/March_Heatwave_2012_final.pdf (accessed on 1 March 2022).
- Dole, R.; Hoerling, M.; Kumar, A.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Kiladis, G.; Webb, R.; Murray, D.; Chen, M.; et al. The making of an extreme event: Putting the Pieces Together. Bull. Am. Meteorol. Soc. 2014, 95, ES57–ES60. [Google Scholar] [CrossRef]
- Grumm, R.H.; Arnott, J.M.; Halblaub, J. The Epic Eastern North American Warm Episode of March 2012. J. Oper. Meteor 2014, 2, 36–50. [Google Scholar] [CrossRef]
- Ellwood, E.R.; Temple, S.A.; Primack, R.; Bradley, N.L.; Davis, C. Record-Breaking Early Flowering in the Eastern United States. PLoS ONE 2013, 8, e53788. [Google Scholar] [CrossRef]
- Scott, M. Do Solar Storms Cause Heat Waves on Earth? Available online: https://www.climate.gov/news-features/climate-qa/do-solar-storms-cause-heat-waves-earth (accessed on 29 March 2022).
- Anagnostopoulos, G.C. Correlation between Space and Atmospheric March 2012 Extreme Events. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; p. 14048. [Google Scholar]
- Anagnostopoulos, G.; Menesidou, S.A.; Vassiliadis, V.; Rigas, A. Correlation between Solar Particles and Temperature in North-East USA. In Proceedings of the 12th Hel.A.S Conference, Thessaloniki, Greece, 28 June–2 July 2015. [Google Scholar]
- Herman, J.R.; Goldberg, R.A. Sun, Weather, and Climate; Dover Pub. Inc.: New York, NY, USA, 1978. [Google Scholar]
- Coumou, D.; Rahmstorf, S. A Decade of Weather Extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Shindell, D.T.; Schmidt, G.A.; Mann, M.E.; Rind, D.; Waple, A. Solar Forcing of Regional Climate Change during the Maunder Minimum. Science 2001, 294, 2149–2152. [Google Scholar] [CrossRef] [Green Version]
- Easterbrook, D. The Solar Magnetic Cause of Climate Changes and Origin of the Ice Ages, 3rd ed.Indepedently Publisher: Washington, DC, USA, 2019. [Google Scholar]
- Robine, J.-M.; Cheung, S.L.K.; Roy, S.L.; Oyen, H.V.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death Toll Exceeded 70,000 in Europe during the Summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- CarbonBrief, Attributing Extreme Weather to Climate Change. Available online: https://www.carbonbrief.org/mapped-how-climate-change-affects-extreme-weather-around-the-world (accessed on 1 March 2022).
- Wilcke, R.A.I.; Kjellström, E.; Lin, C.; Matei, D.; Moberg, A.; Tyrlis, E. The Extremely Warm Summer of 2018 in Sweden—Set in a Historical Context. Earth Syst. Dyn. 2020, 11, 1107–1121. [Google Scholar] [CrossRef]
- Pascale, S.; Kapnick, S.B.; Delworth, T.L.; Cooke, W.F. Increasing Risk of Another Cape Town “Day Zero” Drought in the 21st Century. Proc. Natl. Acad. Sci. USA 2020, 117, 29495–29503. [Google Scholar] [CrossRef]
- Sjoukje, F.; Sparrow, S.; Kew, S.F.; van der Wiel, K.; Wanders, N.; Singh, R.; Hassan, A.; Mohammed, K.; Javid, H.; Haustein, K.; et al. Attributing the 2017 Bangladesh Floods from Meteorological and Hydrological Perspectives. Hydrol. Earth Syst. Sci. 2019, 23, 1409–1429. [Google Scholar] [CrossRef] [Green Version]
- Keellings, D.; Hernández Ayala, J.J. Extreme Rainfall Associated With Hurricane Maria Over Puerto Rico and Its Connections to Climate Variability and Change. Geophys. Res. Lett. 2019, 46, 2964–2973. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.-W.; Xu, T.; Murray, D. Was There a Basis for Anticipating the 2010 Russian Heat Wave? Geophys. Res. Lett. 2011, 38, L06702. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.S.; Chen, M.; Hoerling, M.; Eischeid, J. Do Extreme Climate Events Require Extreme Forcings. Geophys. Res. Lett. 2013, 40, 3440–3445. [Google Scholar] [CrossRef]
- Love, J.; Hayakawa, H.; Cliver, E. On the Intensity of the Magnetic Superstorm of September 1909. Space Weather 2019, 17, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B.; Seneviratne, S.I. Hot Days Induced by Precipitation Deficits at the Global Scale. Proc. Natl. Acad. Sci. USA 2012, 109, 12398–12403. [Google Scholar] [CrossRef] [Green Version]
- Connolly, R.; Soon, W.; Connolly, M.; Baliunas, S.; Berglund, J.; Butler, C.J.; Cionco, R.G.; Elias, A.G.; Fedorov, V.M.; Harde, H.; et al. How Much Has the Sun Influenced Northern Hemisphere Temperature Trends? An Ongoing Debate. Res. Astron. Astrophys. 2021, 21, 131. [Google Scholar] [CrossRef]
- Raspopov, O.; Veretenenko, S. Solar Activity and Cosmic Rays: Influence on Cloudiness and Processes in the Lower Atmosphere (in Memory and on the 75th Anniversary of M.I. Pudovkin). Geomagn. Aeron. 2009, 49, 137–145. [Google Scholar] [CrossRef]
- Desai, M.; Giacalone, J. Large Gradual Solar Energetic Particle Events. Living Rev. Sol. Phys. 2016, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Manchester, W.; Kilpua, E.K.J.; Liu, Y.D.; Lugaz, N.; Riley, P.; Török, T.; Vršnak, B. The Physical Processes of CME/ICME Evolution. Space Sci. Rev. 2017, 212, 1159–1219. [Google Scholar] [CrossRef] [Green Version]
- Lamy, P.L.; Floyd, O.; Boclet, B.; Wojak, J.; Gilardy, H.; Barlyaeva, T. Coronal Mass Ejections over Solar Cycles 23 and 24. Space Sci. Rev. 2019, 215, 39. [Google Scholar] [CrossRef] [Green Version]
- Axford, W.I.; Leer, E.; Skadron, G. The Acceleration of Cosmic Rays by Shock Waves. In Proceedings of the International Cosmic Ray Conference, Plovdiv, Bulgaria, 13–26 August 1977; Volume 11, p. 132. [Google Scholar]
- Kallenrode, M.-B. Current Views on Impulsive and Gradual Solar Energetic Particle Events. J. Phys. G Nuclear Part. Phys. 2003, 29, 965–981. [Google Scholar] [CrossRef]
- Armstrong, T.P.; Pesses, M.E.; Decker, R.B. Shock Drift Acceleration. In Collisionless Shocks in the Heliosphere: Reviews of Current Research; American Geophysical Union: Washington, DC, USA, 1985; p. 271. ISBN 978-1-118-66417-9. [Google Scholar]
- Anagnostopoulos, G.C. Dominant Acceleration Processes of Energetic Protons at the Earth’s Bow Shock. Phys. Scr. 1994, 52, 142–151. [Google Scholar] [CrossRef]
- Sarris, E.T.; Anagnostopoulos, G.C.; Trochoutsos, P.C. On the E-W Asymmetry and the Generation of ESP Events. Sol. Phys. 1984, 93, 195–210. [Google Scholar]
- Cane, H.V.; Reames, D.V.; von Rosenvinge, T.T. The Role of Interplanetary Shocks in the Longitude Distribution of Solar Energetic Particles. J. Geophys. Res. Space Phys. 1988, 93, 9555–9567. [Google Scholar] [CrossRef]
- Ryan, J.M.; Lockwood, J.A.; Debrunner, H. Solar Energetic Particles. Space Sci. Rev. 2000, 93, 35–53. [Google Scholar] [CrossRef]
- Mavromichalaki, H. The physics of cosmic rays applied to space weather. In Advances in Solar and Solar-Terrestrial Physics; Research Signpost: Trivandrum, India, 2012; pp. 135–161. ISBN 978-81-308-0483-5. 37/661 (2). [Google Scholar]
- Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C. Optimizing the Real-Time Ground Level Enhancement Alert System Based on Neutron Monitor Measurements: Introducing GLE Alert Plus. Space Weather 2014, 12, 633–649. [Google Scholar] [CrossRef]
- Kühl, P.; Dresing, N.; Heber, B.; Klassen, A. Solar Energetic Particle Events with Protons Above 500 MeV Between 1995 and 2015 Measured with SOHO/EPHIN. Sol. Phys. 2017, 292, 10. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar Influence on Climate. Rev. Geophys. 2010, 48, RG4001. [Google Scholar] [CrossRef]
- Labitzke, K.; Kunze, M.; Brönnimann, S. Sunspots, the QBO and the Stratosphere in the North Polar Region 20 Years Later. Meteorol. Z. 2006, 15, 355–363. [Google Scholar] [CrossRef]
- Schuurmans, C.J.E. Tropospheric Effects of Variable Solar Activity. Sol. Phys. 1981, 74, 417–419. [Google Scholar] [CrossRef]
- Pudovkin, M.I. Influence of Solar Activity on the Lower Atmosphere State. Int. J. Geomagn. Aeron. 2004, 5, GI2007. [Google Scholar] [CrossRef]
- Siingh, D.; Singh, R.P.; Singh, A.K.; Kulkarni, M.N.; Gautam, A.S.; Singh, A.K. Solar Activity, Lightning and Climate. Surv. Geophys. 2011, 32, 659. [Google Scholar] [CrossRef]
- Avakyan, S.V.; Voronin, N.A.; Nikol’sky, G.A. Response of Atmospheric Pressure and Air Temperature to the Solar Events in October 2003. Geomagn. Aeron. 2015, 55, 1180–1185. [Google Scholar] [CrossRef]
- Le Mouël, J.-L.; Lopes, F.; Courtillot, V. A Solar Signature in Many Climate Indices. J. Geophy. Res. Atmos. 2019, 124, 2600–2619. [Google Scholar] [CrossRef]
- Kossobokov, V.; Mouël, J.L.; Courtillot, V. On the Diversity of Long-Term Temperature Responses to Varying Levels of Solar Activity at Ten European Observatories. Appl. Categ. Struct. 2019, 9, 498–526. [Google Scholar] [CrossRef] [Green Version]
- Vourlidas, A.; Balmaceda, L.A.; Stenborg, G.; Lago, A.D. Multi-Viewpoint Coronal Mass Ejection Catalog Based on STEREO COR2 Observations. Astrophys. J. 2017, 838, 141. [Google Scholar] [CrossRef]
- Schuurmans, C.J.E.; Oort, A.H. A Statistical Study of Pressure Changes in the Troposphere and Lower Stratosphere after Strong Solar Flares. Pure Appl. Geophys. 1969, 75, 233–246. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Raspopov, O.M. A mechanism of solar activity influence on the state of the lower atmosphere and meteoparameters. Geomagn. Aeron. 1992, 32, 1–9. [Google Scholar]
- Pudovkin, M.I.; Babushkina, S.V. Influence of Solar Flares and Disturbances of the Interplanetary Medium on the Atmospheric Circulation. J. Atmos. Terr. Phys. 1992, 54, 841–846. [Google Scholar] [CrossRef]
- Fröhlich, C.; Lean, J. Solar Radiative Output and Its Variability: Evidence and Mechanisms. Astron. Astrophys. Rev. 2004, 12, 273–320. [Google Scholar] [CrossRef]
- Smirnov, S.E.; Mikhailova, G.A.; Kapustina, O.V. Variations in Electric and Meteorological Parameters in the Near-Earth’s Atmosphere at Kamchatka during the Solar Events in October 2003. Geomagn. Aeron. 2014, 54, 240–247. [Google Scholar] [CrossRef]
- Mironova, I.A.; Usoskin, I.G. Possible Effect of Strong Solar Energetic Particle Events on Polar Stratospheric Aerosol: A Summary of Observational Results. Environ. Res. Lett. 2014, 9, 015002. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.A.; Deen, G.W. Apparent Tropospheric Response to MeV-GeV Particle Flux Variations: A Connection via Electrofreezing of Supercooled Water in High-Level Clouds? J. Geophys. Res. 1991, 96, 22283–22296. [Google Scholar] [CrossRef] [Green Version]
- Marsh, N.; Svensmark, H. Cosmic Rays, Clouds, and Climate. Space Sci. Rev. 2000, 94, 215–230. [Google Scholar] [CrossRef]
- Roldugin, V.; Tinsley, B.A. Atmospheric Transparency Changes Associated with Solar Wind-Induced Atmospheric Electricity Variations. J. Atmos. Sol.-Terr. Phys. 2004, 66, 1143–1149. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Usoskin, I.G.; Flückiger, E.O.; Harrison, R.G.; Desorgher, L.; Bütikofer, R.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; et al. Cosmic Ray Induced Ion Production in the Atmosphere. Space Sci. Rev. 2008, 137, 149–173. [Google Scholar] [CrossRef]
- Artamonova, I.; Veretenenko, S. Galactic Cosmic Ray Variation Influence on Baric System Dynamics at Middle Latitudes. J. Atmos. Sol.-Terr. Phys. 2011, 73, 366–370. [Google Scholar] [CrossRef]
- Sarris, E.T.; Krimigis, S.M.; Armstrong, T.P. Observations of Magnetospheric Bursts of High-Energy Protons and Electrons at ∼35 RE with Imp 7. J. Geophys. Res. 1976, 81, 2341–2355. [Google Scholar] [CrossRef]
- Vampola, A.L.; Kuck, G.A. Induced Precipitation of Inner Zone Electrons, 1. Observations. J. Geophys. Res. Space Phys. 1978, 83, 2543–2551. [Google Scholar] [CrossRef]
- Baker, D.N.; Jaynes, A.N.; Kanekal, S.G.; Foster, J.C.; Erickson, P.J.; Fennell, J.F.; Blake, J.B.; Zhao, H.; Li, X.; Elkington, S.R.; et al. Highly Relativistic Radiation Belt Electron Acceleration, Transport, and Loss: Large Solar Storm Events of March and June 2015. J. Geophys. Res. Space Phys. 2016, 121, 6647–6660. [Google Scholar] [CrossRef]
- Sidiropoulos, N.F.; Anagnostopoulos, G.; Rigas, V. Comparative Study on Earthquake and Ground Based Transmitter Induced Radiation Belt Electron Precipitation at Middle Latitudes. Natl. Hazards Earth Syst. Sci. 2011, 11, 1901–1913. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.; Vassiliadis, E.; Pulinets, S. Characteristics of Flux-Time Profiles, Temporal Evolution, and Spatial Distribution of Radiation-Belt Electron Precipitation Bursts in the Upper Ionosphere before Great and Giant Earthquakes. Ann. Geophys. 2012, 55, 1. [Google Scholar] [CrossRef]
- Seppälä, A.; Clilverd, M.A. Energetic Particle Forcing of the Northern Hemisphere Winter Stratosphere: Comparison to Solar Irradiance Forcing. Front. Phys. 2014, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Sarris, E.T.; Krimigis, S.M.; Bostrom, C.O.; Armstrong, T.P. Simultaneous Multispacecraft Observations of Energetic Proton Bursts inside and Outside the Magnetosphere. J. Geophys. Res. 1978, 83, 4289–4306. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.C.; Sarris, E.T.; Krimigis, S.M. Magnetospheric Origin of Energetic (E ≥ 50 KeV) Ions Upstream of the Bow Shock: The October 31, 1977, Event. J. Geophys. Res. Space Phys. 1986, 91, 3020–3028. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.; Efthymiadis, D.; Sarris, E.; Krimigis, S. Evidence and Features of Magnetospheric Particle Leakage on Days 30–36, 1995: Wind, Geotail, and IMP 8 Observations Compared. J. Geophys. Res. 2005, 110, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Maragkakis, M.G.; Anagnostopoulos, G.; Vassiliadis, E.S. Upstream Ion Events with Hard Energy Spectra: Lessons for Their Origin from a Comparative Statistical Study (ACE/Geotail). Planet. Space Sci. 2013, 85, 1–12. [Google Scholar] [CrossRef]
- Seppälä, A.; Randall, C.E.; Clilverd, M.A.; Rozanov, E.; Rodger, C.J. Geomagnetic Activity and Polar Surface Air Temperature Variability. J. Geophys. Res. Space Phys. 2009, 114, A10312. [Google Scholar] [CrossRef] [Green Version]
- Kleimenova, N.G.; Gromova, L.I.; Gromov, S.V.; Malysheva, L.M. Large Magnetic Storm on September 7–8, 2017: High-Latitude Geomagnetic Variations and Geomagnetic Pc5 Pulsations. Geomagn. Aeron. 2018, 58, 597–606. [Google Scholar] [CrossRef]
- Michnowski, S.; Odzimek, A.; Kleimenova, N.G.; Kozyreva, O.V.; Kubicki, M.; Klos, Z.; Israelsson, S.; Nikiforova, N.N. Review of Relationships Between Solar Wind and Ground-Level Atmospheric Electricity: Case Studies from Hornsund, Spitsbergen, and Swider, Poland. Surv. Geophys. 2021, 42, 757–801. [Google Scholar] [CrossRef]
- Hoerling, M. Meteorological March Madness 2012. Available online: https://psl.noaa.gov/csi/events/2012/marchheatwave/anticipation.html (accessed on 23 May 2022).
- Stone, E.C.; Burlaga, L.F.; Cummings, A.C.; Feldman, W.C.; Frain, W.E.; Geiss, J.; Gloeckler, G.; Gold, R.E.; Hovestadt, D.; Krimigis, S.M.; et al. The Advanced Composition Explorer. AIP Conf. Proc. 1990, 203, 48–57. [Google Scholar] [CrossRef]
- Gold, R.E.; Krimigis, S.M.; Hawkins, S.E.; Haggerty, D.K.; Lohr, D.A.; Fiore, E.; Armstrong, T.P.; Holland, G.; Lanzerotti, L.J. Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer Spacecraft. Space Sci. Rev. 1998, 86, 541–562. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.C.; Kaliabetsos, G.; Argyropoulos, G.; Sarris, E.T. High Energy Ions and Electrons Upstream from the Earth’s Bow Shock and Their Dependence on Geomagnetic Conditions: Statistical Results between Years 1982—1988. Geophys. Res. Lett. 1999, 26, 2151–2154. [Google Scholar] [CrossRef]
- National Centers for Environmental Information (NCEI), March 2012 National Overview, Temperatures—Departure from Average. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/201203 (accessed on 14 April 2022).
- Lario, D.; Ho, G.C.; Roelof, E.C.; Anderson, B.J.; Korth, H. Intense Solar Near-Relativistic Electron Events at 0.3 AU. J. Geophys. Res. Space Phys. 2013, 118, 63–73. [Google Scholar] [CrossRef]
- Zeitlin, C.; Hassler, D.M.; Cucinotta, F.A.; Ehresmann, B.; Wimmer-Schweingruber, R.F.; Brinza, D.E.; Kang, S.; Weigle, G.; Böttcher, S.; Böhm, E.; et al. Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory. Science 2013, 340, 1080–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 78 Papaioannou, A.; Souvatzoglou, G.; Paschalis, P.; Gerontidou, M.; Mavromichalaki, H. The First Ground-Level Enhancement of Solar Cycle 24 on 17 May 2012 and Its Real-Time Detection. Sol. Phys. 2014, 289, 423–436. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Echer, E.; Shibata, K.; Verkhoglyadova, O.P.; Mannucci, A.J.; Gonzalez, W.D.; Kozyra, J.; Pätzold, M. The Interplanetary Causes of Geomagnetic Activity during the 7–17 March 2012 Interval: A Cawses II overview. J. Space Weather Space Clim. 2014, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Ghoddousi-Fard, R.; Spogli, L.; Mitchell, C.N.; Li, G.; Ning, B.; Cilliers, P.J.; Sreeja, V.; Aquino, M.; Terkildsen, M.; et al. GPS Phase Scintillation at High Latitudes during Geomagnetic Storms of 7–17 March 2012—Part 2: Interhemispheric Comparison. Ann. Geophys. 2015, 33, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Zolotukhina, N.; Polekh, N.; Kurkin, V.; Romanova, E. Ionospheric Effects of Solar Flares and Their Associated Particle Ejections in March 2012. Adv. Space Res. 2015, 55, 2851–2862. [Google Scholar] [CrossRef]
- Kouloumvakos, A.; Patsourakos, S.; Nindos, A.; Vourlidas, A.; Anastasiadis, A.; Hillaris, A.; Sandberg, I. Multi-Viewpoint observations of a widely distributed Solar Energetic Particle event: The role of EUV Waves and the White-Light shock Signatures. Astrophys. J. 2016, 821, 31. [Google Scholar] [CrossRef] [Green Version]
- Bruno, A.; Bazilevskaya, G.A.; Boezio, M.; Christian, E.R.; de Nolfo, G.A.; Martucci, M.; Merge’, M.; Mikhailov, V.V.; Munini, R.; Richardson, I.G.; et al. Solar Energetic Particle Events Observed by the PAMELA Mission. Astrophys. J. 2018, 862, 97. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Mayorov, A.G.; Mikhailov, V.V. Comparison of Solar Energetic Particle Events Observed by PAMELA Experiment and by Other Instruments in 2006–2012. In Proceedings of the International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013; Volume 33, p. 1392. [Google Scholar]
- Gurnett, D.A.; Kurth, W.S.; Burlaga, L.F.; Ness, N.F. In Situ Observations of Interstellar Plasma with Voyager 1. Science 2013, 341, 1489–1492. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, G.; Sarris, E.; Krimigis, S. Observational Test of Shock Drift and Fermi Acceleration on a Seed Particle Population Upstream of Earth’s Bow Shock. J. Geophys. Res. 1988, 93, 5541–5546. [Google Scholar] [CrossRef]
- Li, X.; Baker, D.N.; Kanekal, S.G.; Looper, M.; Temerin, M. Long Term Measurements of Radiation Belts by SAMPEX and Their Variations. Geophys. Res. Lett. 2001, 28, 3827–3830. [Google Scholar] [CrossRef] [Green Version]
- Borovsky, J.E.; Denton, M.H. Evolution of the Magnetotail Energetic-electron Population during High-speed-stream-driven Storms: Evidence for the Leakage of the Outer Electron Radiation Belt into the Earth’s Magnetotail. J. Geophys. Res. 2011, 116, A12228. [Google Scholar] [CrossRef] [Green Version]
- Sarafopoulos, D.V.; Sidiropoulos, N.F.; Sarris, E.T.; Lutsenko, V.; Kudela, K. The Dawn-Dusk Plasma Sheet Asymmetry of Energetic Particles: An Interball Perspective. J. Geophys. Res. Space Phys. 2001, 106, 13053–13065. [Google Scholar] [CrossRef]
- Kodera, K. Solar Cycle Modulation of the North Atlantic Oscillation: Implication in the Spatial Structure of the NAO. Geophys. Res. Lett. 2002, 29, 59-1–59-4. [Google Scholar] [CrossRef]
- Kodera, K.; Kuroda, Y. A Possible Mechanism of Solar Modulation of the Spatial Structure of the North Atlantic Oscillation. J. Geophys. Res. 2005, 110, D02111. [Google Scholar] [CrossRef]
- Gleisner, H.; Thejll, P. Patterns of Tropospheric Response to Solar Variability. Geophys. Res. Lett. 2003, 30, 1711. [Google Scholar] [CrossRef]
- Al-Feadh, D.; Al-Ramdhan, W. Large Geomagnetic Storms Drives by Solar Wind in Solar Cycle 24. J. Phys. Conf. Ser. 2019, 1234, 012004. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Gerontidou, M.; Paouris, E.; Paschalis, P.; Lingri, D.; Laoutaris, A.; Kanellakopoulos, A. The extended geomagnetic storm of March 17. In Proceedings of the 12th Hel.A.S Conference, Thessaloniki, Greece, 28 June–2 July 2015. [Google Scholar]
- Kamide, Y.; Kusano, K. No Major Solar Flares but the Largest Geomagnetic Storm in the Present Solar Cycle. Space Weather 2015, 13, 365–367. [Google Scholar] [CrossRef]
- Kataoka, R.; Shiota, D.; Kilpua, E.; Keika, K. Pileup Accident Hypothesis of Magnetic Storm on 17 March 2015. Geophys. Res. Lett. 2015, 42, 5155–5161. [Google Scholar] [CrossRef]
- 97 Liu, Y.D.; Hu, H.; Wang, R.; Yang, Z.; Zhu, B.; Liu, Y.A.; Luhmann, J.G.; Richardson, J.D. Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. 2015, 809, L34. [Google Scholar] [CrossRef]
- Wu, C.-C.; Liou, K.; Lepping, R.P.; Hutting, L.; Plunkett, S.; Howard, R.A.; Socker, D. The First Super Geomagnetic Storm of Solar Cycle 24: “The St. Patrick’s Day Event (17 March 2015).” Earth Planets Space 2016, 68, 151. [Google Scholar] [CrossRef] [Green Version]
- Marubashi, K.; Cho, K.-S.; Kim, R.-S.; Kim, S.; Park, S.-H.; Ishibashi, H. The 17 March 2015 Storm: The Associated Magnetic Flux Rope Structure and the Storm Development. Earth Planets Space 2016, 68, 173. [Google Scholar] [CrossRef] [Green Version]
- Veretenenko, S.; Ogurtsov, M. Regional and Temporal Variability of Solar Activity and Galactic Cosmic Ray Effects on the Lower Atmosphere Circulation. Adv. Space Res. 2012, 49, 770–783. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Veretenenko, S.V.; Pellinen, R.; Kyrö, E. Cosmic Ray Variation Effects in the Temperature of the High-Latitudinal Atmosphere. Adv. Space Res. 1996, 17, 165–168. [Google Scholar] [CrossRef]
- Scaife, A.A.; Knight, J.R.; Vallis, G.K.; Folland, C.K. A Stratospheric Influence on the Winter NAO and North Atlantic Surface Climate. Geophys. Res. Lett. 2005, 32, L18715. [Google Scholar] [CrossRef] [Green Version]
- Maliniemi, V.; Asikainen, T.; Mursula, K.; Seppälä, A. QBO-Dependent Relation between Electron Precipitation and Wintertime Surface Temperature. J. Geophys. Res. Atmos. 2013, 118, 6302–6310. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kodera, K.; Yoshida, K.; Yukimoto, S.; Gray, L. Influence of the Solar Cycle on the North Atlantic Oscillation. J. Geophys. Res. Atmos. 2022, 127, e2021JD035519. [Google Scholar] [CrossRef]
- Wahab, Μ.A.; Shaltoot, Μ.Μ.; Youssef, S.; Hussein, M.M. Interrelationship between the North Atlantic Oscillation and Solar cycle. Int. J. Adv. Res. 2016, 4, 261–266. [Google Scholar]
- Silverman, S.M. Low Latitude Auroras: The Storm of 25 September 1909. J. Atmos. Terr. Phys. 1995, 57, 673–685. [Google Scholar] [CrossRef]
- Miyahara, H.; Tokanai, F.; Moriya, T.; Takeyama, M.; Sakurai, H.; Horiuchi, K.; Hotta, H. Gradual Onset of the Maunder Minimum Revealed by High-Precision Carbon-14 Analyses. Sci. Rep. 2021, 11, 5482. [Google Scholar] [CrossRef] [PubMed]
- Gopalswamy, N.; Yashiro, S.; Thakur, N.; Mäkelä, P.; Xie, H.; Akiyama, S. The 2012 July 23 backside eruption: An extreme energetic particle event? Astrophys. J. 2016, 833, 216. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Lakhina, G.S.; Alex, S. The Extreme Magnetic Storm of 1–2 September 1859. J. Geophys. Res. Space Phys. 2003, 108, 1268. [Google Scholar] [CrossRef] [Green Version]
- Nicoll, K.A.; Harrison, R.G. Detection of Lower Tropospheric Responses to Solar Energetic Particles at Midlatitudes. Phys. Rev. Lett. 2014, 112, 225001. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostopoulos, G.C.; Menesidou, S.-A.I.; Efthymiadis, D.A. The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions. Atmosphere 2022, 13, 926. https://doi.org/10.3390/atmos13060926
Anagnostopoulos GC, Menesidou S-AI, Efthymiadis DA. The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions. Atmosphere. 2022; 13(6):926. https://doi.org/10.3390/atmos13060926
Chicago/Turabian StyleAnagnostopoulos, Georgios C., Sofia-Anna I. Menesidou, and Dimitrios A. Efthymiadis. 2022. "The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions" Atmosphere 13, no. 6: 926. https://doi.org/10.3390/atmos13060926
APA StyleAnagnostopoulos, G. C., Menesidou, S. -A. I., & Efthymiadis, D. A. (2022). The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions. Atmosphere, 13(6), 926. https://doi.org/10.3390/atmos13060926