Assessment of Methane Emission and the Factors That Influence It, from Three Rice Varieties Commonly Cultivated in the State of Puducherry
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Manner of Farming
2.3. Sampling and Analysis of Methane
2.4. Other Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. General
3.2. Methane Emission from ADT 39 in ‘Wet’ Season
3.3. Methane Emission from ADT 45 in ‘Dry’ Season
3.4. Methane Emission from CO 45 in ‘Dry’ and ‘Wet’ Seasons
3.5. Effect of Soil Temperature
3.6. Effect of Soil pH
3.7. Present Findings in the Context of the Prior Art
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Shindell, D.T.; Faluvegi, G.; Koch, D.M.; Schmidt, G.A.; Unger, N.; Bauer, S.E. Improved attribution of climate forcing to emissions. Science 2009, 326, 716–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchemin, É.; Lucotte, M.; Canuel, R.; Soumis, N. First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up. Lakes Reserv. Res. Manag. 2006, 11, 9–19. [Google Scholar] [CrossRef]
- Nan, Q.; Wang, C.; Wang, H.; Yi, Q.; Wu, W. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci. Total Environ. 2020, 746, 141351. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, R.; Bao, Z.; Minamisawa, K. CH4 oxidation-dependent 15N2 fixation in rice roots in a low-nitrogen paddy field and in Methylosinus sp. strain 3S-1 isolated from the roots. Soil Biol. Biochem. 2019, 132, 40–46. [Google Scholar] [CrossRef]
- Kurnik, J.; Devine, K. Innovation in Reducing Methane Emissions from the Food Sector: Side of Rice, Hold the Methane. World Wildlife Fund. 2022. Available online: https://www.worldwildlife.org/blogs/sustainability-works/posts/innovation-in-reducing-methane-emissions-from-the-food-sector-side-of-rice-hold-the-methane#:~:text=Rice%2C%20one%20of%20the%20most,of%20total%20greenhouse%20gas%20emissions (accessed on 13 September 2022).
- Turetsky, M.R.; Kotowska, A.; Bubier, J.; Dise, N.B.; Crill, P.; Hornibrook, E.R.; Minkkinen, K.; Moore, T.R.; Myers-Smith, I.H.; Nykänen, H.; et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Chang. Biol. 2014, 20, 2183–2197. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Liu, H.; Zhai, X.; Li, R.; Song, P.; Jia, M. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob. J. Clean. Prod. 2020, 273, 122925. [Google Scholar] [CrossRef]
- Zehnder, A.J.B. Ecology of methane formation. In Water Pollution Microbiology; Mitchell, R., Ed.; Wiley: New York, NY, USA, 1978; Volume 2, pp. 349–376. [Google Scholar]
- Abril, G.; Borges, A.V. Carbon dioxide and methane emissions from estuaries. In Greenhouse Gas Emissions—Fluxes and Processes; Springer: Berlin/Heidelberg, Germany, 2005; pp. 187–207. [Google Scholar]
- Song, K.; Zhang, G.; Yu, H.; Huang, Q.; Zhu, X.; Wang, T.; Xu, H.; Lv, S.; Ma, J. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. J. Clean. Prod. 2021, 297, 126650. [Google Scholar] [CrossRef]
- Abbasi, T.; Tauseef, S.M.; Abbasi, S.A. Biogas Energy; Springer: New York, NY, USA; London, UK, 2012. [Google Scholar]
- Das, K.; Baruah, K.K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiologiaplantarum 2008, 1342, 303–312. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.; Wu, J.; Han, X.; Teng, Y.; Zhou, M.; Ren, Y.; Jiang, P. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Sci. Total Environ. 2021, 792, 148460. [Google Scholar] [CrossRef]
- Abbasi, T.; Tauseef, S.M.; Abbasi, S.A. Global Warming and The Role of Wetlands; Lap Lambart Academic: Saarbrücken, Germany, 2011; xiv + 264 pages; ISBN 978-3846556009. [Google Scholar]
- Luithui, C.; Dhanuja, C.; Abbasi, T.; Abbasi, S.A. Greenhouse Gas Emissions and Wetlands: A Brief Review of the State-of-the-art. Int. J. Environ. Sci. Eng. Res. 2017, 8, 1–50. [Google Scholar]
- Setyanto, P.; Rosenani, A.B.; Boer, R.; Fauziah, C.I.; Khanif, M.J. The Effect of Rice Cultivars on Methane Emission from Irrigated Rice Field. 2004. Available online: http://repository.pertanian.go.id/handle/123456789/67 (accessed on 13 September 2022).
- Bhattacharyya, P.; Roy, K.S.; Das, M.; Ray, S.; Balachandar, D.; Karthikeyan, S.; Nayak, A.K.; Mohapatra, T. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach. Sci. Total Environ. 2016, 542, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.; Dash, P.K.; Swain, C.K.; Padhy, S.R.; Roy, K.S.; Neogi, S.; Berliner, J.; Adak, T.; Pokhare, S.S.; Baig, M.J.; et al. Mechanism of plant mediated methane emission in tropical lowland rice. Sci. Total Environ. 2019, 651, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Eller, G.; Frenzel, P. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl. Environ. Microbiol. 2001, 67, 2395–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, S.K.; Singh, J.S. Spatio-temporal variation and effect of urea fertilization on methanotrophs in a tropical dryland rice field. Soil Biol. Biochem. 2000, 32, 521–526. [Google Scholar] [CrossRef]
- Ma, K.E.; Qiu, Q.; Lu, Y. Microbial mechanism for rice variety control on methane emission from rice field soil. Glob. Chang. Biol. 2010, 16, 3085–3095. [Google Scholar] [CrossRef]
- Kritee, K.; Nair, D.; Zavala-Araiza, D.; Proville, J.; Rudek, J.; Adhya, T.K.; Loecke, T.; Esteves, T.; Balireddygari, S.; Dava, O.; et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long-and short-term climate impacts. Proc. Natl. Acad. Sci. USA 2018, 115, 9720–9725. [Google Scholar] [CrossRef] [Green Version]
- Dhanuja, C.; Abbasi, T.; Abbasi, S.A. Greenhouse gas emissions from paddy fields in peninsular South India. Int. J. Eng. Sci. Res. 2018, 6, 56–63. [Google Scholar]
- Dhaunja, C.; Saxena, D.K.; Abbasi, T.; Abbasi, S.A. Effect of application of vermicompost on methane emission and grain yield of ChinnaPonni paddy crop. Paddy Water Environ. 2019, 17, 797–802. [Google Scholar] [CrossRef]
- Goldenfum, J.A. UNESCO/IHA Greenhouse Gas (GHG) Research Project. 2009. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000183167 (accessed on 13 September 2022).
- Laughlin, R.J.; Stevens, R.J. Changes in composition of nitrogen-15-labeled gases during storage in septum-capped vials. Soil Sci. Soc. Am. J. 2003, 67, 540–543. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). World Reference Base for Soil Resources 2014: International Soil Classification; FAO: Rome, Italy, 2015. [Google Scholar]
- Alan, C.G.; David, S.H. Practical Statistics and Experimental Design for Plant and Crop Sciences; Wiley: New York, NY, USA, 2001; p. 455. [Google Scholar]
- Tauseef, S.M.; Abbasi, T.; Abbasi, S.A. Energy recovery from wastewaters with high-rate anaerobic digesters, Renew. Sustain. Energy Rev. 2013, 19, 704–741. [Google Scholar] [CrossRef]
- Abbasi, T.; Tauseef, S.M.; Abbasi, S.A. Anaerobic digestion for global warming control and energy generation—An overview. Renew. Sustain. Energy Rev. 2012, 16, 3228–3242. [Google Scholar] [CrossRef]
- Luithui, C.; Abbasi, T.; Abbasi, S.A. Advances in Water Pollution Monitoring and Control; Springer: Singapore, 2020; pp. 59–65. [Google Scholar]
- Tabassum Abbasi Patnaik, P.; Abbasi, S.A. Ability of Indian pennywort Bacopa monnieri (L.) Pennell in the phytoremediation of sewage (greywater). Environ. Sci. Pollut. Res. 2019, 21, 6078–6087. [Google Scholar] [CrossRef] [PubMed]
- Tabassum-Abbasi Abbasi, T.; Luithui, C.; Abbasi, S.A. Modelling methane and nitrous oxide emissions from rice paddy wetlands in India using Artificial Neural Networks (ANNs). Water 2020, 12, 2169. [Google Scholar] [CrossRef] [Green Version]
- Tabassum-Abbasi Abbasi, T.; Luithui, C.; Abbasi, S.A. A Model to Forecast Methane Emissions from Tropical and Subtropical Reservoirs on the Basis of Artificial Neural Networks. Water 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhang, H.; He, J.; Huan, P. February. Study on Methane Emission Factor of Paddy Fields in Hubei Province. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 651, No. 4; p. 042031. [Google Scholar]
- Islam, S.F.U.; van Groenigen, J.W.; Jensen, L.S.; Sander, B.O.; de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.; Baruah, K.K.; Gupta, P.K. Selection of rice genotypes for lower methane emission. Agron. Sustain. Dev. 2008, 28, 181–186. [Google Scholar] [CrossRef]
- Dhanuja, C.; Abbasi, T.; Abbasi, S.A. Fertilization of paddy cultivation with vermicompost: A critical mini review. Org. Agric. 2020, 10, 309–325. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Dhanuja, C.; Abbasi, T. Emission of greenhouse gases from Indian wetlands: An overview. Trop. Ecol. 2021, 62, 319–328. [Google Scholar] [CrossRef]
Soil Characteristics | Study Area in Puducherry, | |||
---|---|---|---|---|
Manjakuppam | Kailaankuppam | Chettikuppam | Konnimedu | |
pH | 7.27 ± 0.93 | 7.77 ± 0.76 | 7.6 ± 0.6 | 7.9 ± 0.4 |
Electrical conductivity, (dS/m) | 0.42 ± 0.1 | 0.58 ± 0.08 | 0.33 ± 0.03 | 0.6 ± 0.2 |
Soil texture class | Sandy loam | Clay loam | Loam | Sandy loam |
Clay, % | 12 ± 2 | 38 ± 4 | 25 ± 4 | 15 ± 2 |
Sand, % | 50 ± 6 | 40 ± 2 | 30 ± 2 | 45 ± 4 |
Silt, % | 38 ± 3 | 22 ± 5 | 45 ± 6 | 40 ± 5 |
Organic carbon, % | 0.87 ± 0.05 | 0.91 ± 0.04 | 0.46 ± 0.11 | 0.96 ± 0.15 |
Available nitrogen, % | 0.47 ± 0.01 | 0.43 ± 0.02 | 0.4 ± 0.09 | 0.47 ± 0.06 |
C/N ratio | 1.8 ± 0.09 | 2.1 ± 0.18 | 1.2 ± 0.19 | 2.1 ± 0.13 |
Growth Stages | Methane Flux, mg/m2·h | ||
---|---|---|---|
Manjakupppam | Kailaankuppam | Chettikuppam | |
Vegetative | 2.3 ± 0.5 | 1.50 ± 0.2 | 4.5 ± 0.7 |
Reproductive | 4.3 ± 1.3 | 3.1± 1.2 | 5 ± 1.3 |
Maturity | 0.1 ± 0.04 | 0.031 ± 0.02 | 0.2 ± 0.1 |
Weighted average | 2.0 ± 0.5 | 1.4 ± 0.4 | 3.2 ± 0.6 |
CO2 equivalent | 54.4 ± 13.6 | 38.0 ± 10.8 | 37.0 ± 16.3 |
Growth Stages | Methane Flux, mg/m2·h |
---|---|
Vegetative | 2.2 ± 0.5 |
Reproductive | 7.3 ± 0.7 |
Maturity | 0.1 ± 0.04 |
Weighted average | 2.63 ± 0.4 |
CO2 equivalent | 71.5 ± 10.8 |
Growth Stages | Methane Flux, mg/m2·h | |
---|---|---|
Wet | Dry | |
Vegetative | 22.9 ± 1.8 | 44.6 ± 5.8 |
Flowering | 0.6 ± 0.4 | 1.65 ± 0.2 |
Maturity | 0.13 ± 0.06 | 0.1 ± 0.02 |
Weighted average | 10.0 ± 0.9 | 19.5 ± 2.5 |
CO2 equivalent | 272 ± 24.4 | 530.4 ± 68.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekaran, D.; Tabassum-Abbasi; Abbasi, T.; Abbasi, S.A. Assessment of Methane Emission and the Factors That Influence It, from Three Rice Varieties Commonly Cultivated in the State of Puducherry. Atmosphere 2022, 13, 1811. https://doi.org/10.3390/atmos13111811
Chandrasekaran D, Tabassum-Abbasi, Abbasi T, Abbasi SA. Assessment of Methane Emission and the Factors That Influence It, from Three Rice Varieties Commonly Cultivated in the State of Puducherry. Atmosphere. 2022; 13(11):1811. https://doi.org/10.3390/atmos13111811
Chicago/Turabian StyleChandrasekaran, Dhanuja, Tabassum-Abbasi, Tasneem Abbasi, and Shahid Abbas Abbasi. 2022. "Assessment of Methane Emission and the Factors That Influence It, from Three Rice Varieties Commonly Cultivated in the State of Puducherry" Atmosphere 13, no. 11: 1811. https://doi.org/10.3390/atmos13111811
APA StyleChandrasekaran, D., Tabassum-Abbasi, Abbasi, T., & Abbasi, S. A. (2022). Assessment of Methane Emission and the Factors That Influence It, from Three Rice Varieties Commonly Cultivated in the State of Puducherry. Atmosphere, 13(11), 1811. https://doi.org/10.3390/atmos13111811