Spatio–Temporal Variation of Extreme Climates and Its Relationship with Teleconnection Patterns in Beijing–Tianjin–Hebei from 1980 to 2019
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Selection of Extreme Climate Indices
2.3.2. Principal Component Analysis Method (PCA)
2.3.3. Trend Analysis
2.3.4. Pettitt Mutation Test
2.3.5. Rescaled Range (R/S) Analysis
2.3.6. Correlation Analysis
3. Results
3.1. Spatial–Temporal Variation Characteristics of Extreme Climates
3.1.1. Spatial–Temporal Variation of Extreme Precipitation Indices
3.1.2. Spatial–Temporal Variation of Extreme Temperature Indices
3.2. Analysis of Future Trends
3.2.1. Probability Density Function of Extreme Climate Indices
3.2.2. Continuous Prediction of Extreme Climate Indices
3.3. Correlation Analysis between Extreme Climate Indices and Teleconnection Patterns
3.3.1. Simple Correlation Analysis
3.3.2. Wavelet Transform Coherence (WTC)
3.3.3. Multiple Wavelet Coherence (MWC)
4. Discussion
4.1. Spatio–Temporal Variations in Extreme Climates
4.2. Influencing Factors of Extreme Climates
4.3. Limitations and Uncertainties
5. Conclusions
- (1)
- All the extreme precipitation indices, except RX1day, RX5day, and R99P showed an increasing trend. Among the extreme temperature indices, warm and cold events showed an increasing and decreasing trend, respectively. In terms of spatial patterns, except for SDII and R20mm, most of the stations showed a decreasing trend for extreme precipitation indices. Most of the stations showed an increasing trend in warm events, while a decreasing trend in cold events. Overall, the climate in the Beijing–Tianjin–Hebei region has tended to be warm and dry in recent decades.
- (2)
- During 1980–2019, extreme rainfall events occurred more frequently, high-temperature events both increased in severity and frequency, and low-temperature events increased in frequency but decreased in severity. In the future, the trends of CDD in extreme precipitation indices will show strong discontinuities, and the extreme temperature indices will continue to follow the past 40 year trend.
- (3)
- Correlation analysis showed that the teleconnection pattern was the main factor influencing extreme climate change. In addition, the analysis of WTC and MWC showed that the multi-factor combination greatly enhanced the explanatory power of the teleconnection pattern for extreme climate. It was observed that the explanatory power for extreme climate increased with the increase in the combination factors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and prospects. J. Geogr. Sci. 2016, 26, 750–767. [Google Scholar] [CrossRef] [Green Version]
- Gills, B.; Morgan, J. Global climate emergency: After COP24, climate science, urgency, and the threat to humanity. Globalizations 2020, 17, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Richards, C.; Lupton, R.; Allwood, J.M. Re-framing the threat of global warming: An empirical causal loop diagram of climate change, food insecurity and societal collapse. Clim. Chang. 2021, 164, 49. [Google Scholar] [CrossRef]
- Xue, X.; Wang, T.; Guo, J.; Yang, Y.; Peng, F.; Liu, L. Impact of global warming on drought in China. Sci. Cold Arid. Reg. 2012, 4, 201–210. [Google Scholar]
- Lloret, F.; Escudero, A.; Iriondo, J.M.; Martínez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Han, Z.; Xu, Y.; Zhou, B.; Gao, X. Changes in extreme climate events in China under 1.5 C–4 C global warming targets: Projections using an ensemble of regional climate model simulations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031057. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Zhu, Q.; Zhang, J.; Liu, J.; Chen, H.; Peng, C.; Li, P.; Li, M.; Wang, M.; Zhao, P. Global response of terrestrial gross primary productivity to climate extremes. Sci. Total Environ. 2021, 750, 142337. [Google Scholar] [CrossRef] [PubMed]
- Diatta, S.; Diedhiou, C.W.; Dione, D.M.; Sambou, S. Spatial variation and trend of extreme precipitation in west africa and teleconnections with remote indices. Atmosphere 2020, 11, 999. [Google Scholar] [CrossRef]
- Odoulami, R.C.; Akinsanola, A. Recent assessment of West African summer monsoon daily rainfall trends. Weather 2018, 73, 283–287. [Google Scholar] [CrossRef]
- Tangang, F.; Juneng, L.; Aldrian, E. Observed changes in extreme temperature and precipitation over Indonesia. Int. J. Climatol. 2017, 37, 1979–1997. [Google Scholar]
- Alexander, L.V.; Arblaster, J.M. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather. Clim. Extrem. 2017, 15, 34–56. [Google Scholar] [CrossRef]
- Han, J.; Du, H.; Wu, Z.; He, H.S. Changes in extreme precipitation over dry and wet regions of China during 1961–2014. J. Geophys. Res. Atmos. 2019, 124, 5847–5859. [Google Scholar] [CrossRef]
- Guo, E.; Zhang, J.; Wang, Y.; Quan, L.; Zhang, R.; Zhang, F.; Zhou, M. Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecol. Indic. 2019, 96, 669–683. [Google Scholar] [CrossRef]
- Rousta, I.; Doostkamian, M.; Taherian, A.M.; Haghighi, E.; Ghafarian Malamiri, H.R.; Ólafsson, H. Investigation of the spatio-temporal variations in atmosphere thickness pattern of Iran and the Middle East with special focus on precipitation in Iran. Climate 2017, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Soltani, M.; Zhou, W.; Cheung, H.H. Analysis of extreme precipitation events over central plateau of Iran. Am. J. Clim. Chang. 2016, 5, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Karampour, M.; Doostkamian, M.; Olafsson, H.; Zhang, H.; Mushore, T.D.; Karimvandi, A.S.; Vargas, E.R.M. Synoptic-dynamic analysis of extreme precipitation in Karoun River Basin, Iran. Arab. J. Geosci. 2020, 13, 83. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, N.; Zhang, D.; Wang, Y.; Tajie, S. Subseasonal influences of teleconnection patterns on the boreal wintertime surface air temperature over southern China as revealed from three reanalysis datasets. Atmosphere 2019, 10, 514. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Song, Y.; Zhu, S.; Zhou, B.; Zhang, J. Atmospheric circumglobal teleconnection triggered by spring land thermal anomalies over West Asia and its possible impacts on early summer climate over northern China. J. Clim. 2021, 34, 5999–6021. [Google Scholar] [CrossRef]
- Yuan, F.; Liu, J.; Berndtsson, R.; Hao, Z.; Cao, Q.; Wang, H.; Du, Y.; An, D. Changes in precipitation extremes over the source region of the Yellow River and its relationship with teleconnection patterns. Water 2020, 12, 978. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gan, T.Y.; Tan, X. Spatiotemporal changes in precipitation extremes over Canada and their teleconnections to large-scale climate patterns. J. Hydrometeorol. 2019, 20, 275–296. [Google Scholar] [CrossRef]
- Xi, Y.; Miao, C.; Wu, J.; Duan, Q.; Lei, X.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [Google Scholar] [CrossRef]
- Mubarrok, S.; Jang, C.J. Annual Maximum Precipitation in Indonesia and Its Association to Climate Teleconnection Patterns: An Extreme Value Analysis. SOLA 2022, 18, 187–192. [Google Scholar] [CrossRef]
- Craig, P.M.; Allan, R.P. The role of teleconnection patterns in the variability and trends of growing season indices across Europe. Int. J. Climatol. 2022, 42, 1072–1091. [Google Scholar] [CrossRef]
- Qianrong, M.; Rui, H.; Yongping, W.; Jie, Z.; Rong, Z.; Guoling, F. Variations in July extreme precipitation in Henan Province and the related mechanisms. Int. J. Climatol. 2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Ruan, G.; Xu, C.Y.; Xiong, L.; Jain, S.K.; Li, L. Detection and attribution of Norwegian annual precipitation variability related to teleconnections. Earth Space Sci. 2022, 9, e2021EA001857. [Google Scholar] [CrossRef]
- Syed, F.; Adnan, S.; Zamreeq, A.; Ghulam, A. Identification of droughts over Saudi Arabia and global teleconnections. Nat. Hazards 2022, 112, 2717–2737. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhong, F.; Wang, P. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmos. Res. 2021, 247, 105256. [Google Scholar] [CrossRef]
- Jiang, R.; Liang, J.; Zhao, Y.; Wang, H.; Xie, J.; Lu, X.; Li, F. Assessment of vegetation growth and drought conditions using satellite-based vegetation health indices in Jing-Jin-Ji region of China. Sci. Rep. 2021, 11, 13775. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, Y.; Ma, T.; Zhao, M.; Fan, Z.; Yin, X.; Liu, Y.; Yue, T. Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Sci. Total Environ. 2019, 688, 1005–1015. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Y.; Song, L.; Xiang, Y. Responses of extreme high temperatures to urbanization in the Beijing–Tianjin–Hebei urban agglomeration in the context of a changing climate. Meteorol. Appl. 2021, 28, e2024. [Google Scholar] [CrossRef]
- Tong, R.; Sun, W.; Han, Q.; Yu, J.; Tian, Z. Spatial and temporal variations in extreme precipitation and temperature events in the Beijing–Tianjin–Hebei region of China over the past six decades. Sustainability 2020, 12, 1415. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhang, C.; Zhang, J.; Zou, X.; Mo, Y.; Tian, Y. Potential linkages of precipitation extremes in Beijing-Tianjin-Hebei region, China, with large-scale climate patterns using wavelet-based approaches. Theor. Appl. Climatol. 2020, 141, 1251–1269. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Liu, Y.; Liu, Y.; Xu, S.; Deng, Y.; Zhao, Y.; Chen, Y.; Hong, S. Multi-dimensional analysis of urban expansion patterns and their driving forces based on the center of gravity-GTWR model: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Acta Geogr. Sin. 2018, 73, 1076–1092. [Google Scholar]
- Saleem, M.U.; Ahmed, S.R. Missing data imputations for upper air temperature at 24 standard pressure levels over pakistan collected from Aqua satellite. J. Data Anal. Inf. Process. 2016, 4, 132–146. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, G.T.; Ozaki, V. Missing data imputation of climate datasets: Implications to modeling extreme drought events. Rev. Bras. De Meteorol. 2014, 29, 21–28. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Xu, Y.; Bastos, A.; Ciais, P.; Peng, S. The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophys. Res. Lett. 2017, 44, 3209–3218. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) user manual. Clim. Res. Branch Environ. Can. 2004, 22. Available online: http://www.acmad.net/rcc/procedure/RClimDexUserManual.pdf (accessed on 23 November 2022).
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Lever, J.; Krzywinski, M.; Altman, N. Points of significance: Principal component analysis. Nat. Methods 2017, 14, 641–643. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Yu, Y.-S.; Zou, S.; Whittemore, D. Non-parametric trend analysis of water quality data of rivers in Kansas. J. Hydrol. 1993, 150, 61–80. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple-wavelet coherence of world’s large rivers with meteorological factors and ocean signals. J. Geophys. Res. Atmos. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Lu, C.; Sun, Q. Impact of climate change on irrigation water requirement of wheat growth–A case study of the Beijing-Tianjin-Hebei region in China. Urban Clim. 2021, 39, 100971. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Wang, X.; Liu, Z. Observed changes in temperature extremes for the Beijing–Tianjin–Hebei region of China. Meteorol. Appl. 2017, 24, 74–83. [Google Scholar] [CrossRef]
- Gao, N.; Bueh, C.; Xie, Z.; Gong, Y. A novel identification of the Polar/Eurasia pattern and its weather impact in May. J. Meteorol. Res. 2019, 33, 810–825. [Google Scholar] [CrossRef]
- Fan, S.; Yang, X. Arctic and East Asia winter climate variations associated with the eastern Atlantic pattern. J. Clim. 2017, 30, 573–583. [Google Scholar] [CrossRef]
- Gao, T.; Yu, J.-Y.; Paek, H. Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theor. Appl. Climatol. 2017, 129, 815–831. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Guo, J.; Song, L.; Cohen, J.B.; Wang, Y. Temporal disparity of the atmospheric systems contributing to interannual variation of wintertime haze pollution in the North China Plain. Int. J. Climatol. 2020, 40, 128–144. [Google Scholar] [CrossRef]
- Bueh, C.; Li, Y.; Lin, D.; Lian, Y. Interannual variability of summer rainfall over the northern part of China and the related circulation features. J. Meteorol. Res. 2016, 30, 615–630. [Google Scholar] [CrossRef]
- Lin, Z. Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci. 2014, 31, 1366–1376. [Google Scholar] [CrossRef]
- Thompson, D.W.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.; Wallace, J.M.; Hegerl, G.C. Annular modes in the extratropical circulation. Part II: Trends. J. Clim. 2000, 13, 1018–1036. [Google Scholar] [CrossRef]
- Bingyi, W.; Jia, W. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea–ice extent. Adv. Atmos. Sci. 2002, 19, 297–320. [Google Scholar] [CrossRef]
- Bueh, C.; Shi, N.; Ji, L. Maintenance mechanism of the Scandinavian pattern in its positive phase during 2000/2001 winter and its influence on the weather over the northern part of China. Plateau Meteorol. 2008, 27, 76–83. [Google Scholar]
- Liu, Y.; Liu, Y. The impact of the Scandinavian teleconnection pattern on late autumn rainfall in the western region of southwest China. Clim. Environ. Res. 2017, 22, 80–88. (In Chinese) [Google Scholar]
- Lu, Q.; Rao, J.; Shi, C.; Guo, D.; Fu, G.; Wang, J.; Liang, Z. Possible influence of Sudden Stratospheric Warmings on the atmospheric environment in the Beijing-Tianjin-Hebei region. Atmos. Chem. Phys. Discuss. 2022, 22, 13087–13102. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Gong, D.; Kim, S.-J.; Mao, R.; Zhao, X. Possible influence of atmospheric circulations on winter haze pollution in the Beijing–Tianjin–Hebei region, northern China. Atmos. Chem. Phys. 2016, 16, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Wang, H.; Chen, H. Understanding severe winter haze events in the North China Plain in 2014: Roles of climate anomalies. Atmos. Chem. Phys. 2017, 17, 1641–1651. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Letu, H.; Pan, X.; Wang, Z.; Ma, R.; Liu, C.; Dai, T.; Li, S.; Chen, L.; Chen, C. Diurnal haze variations over the North China plain using measurements from Himawari-8/AHI. Atmos. Environ. 2019, 210, 100–109. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, J.; An, X.; Li, C. The combined impact of subtropical wave train and Polar− Eurasian teleconnection on the extreme cold event over North China in January 2021. Clim. Dyn. 2022, 1–14. [Google Scholar] [CrossRef]
- Irannezhad, M.; Chen, D.; Kløve, B. Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961–2011. Int. J. Climatol. 2015, 35, 3078–3092. [Google Scholar] [CrossRef]
- Zhao, R.; Biswas, A.; Zhou, Y.; Zhou, Y.; Shi, Z.; Li, H. Identifying localized and scale-specific multivariate controls of soil organic matter variations using multiple wavelet coherence. Sci. Total Environ. 2018, 643, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gao, T.; Luo, M.; Ge, E.; Yang, Y.; Liu, Z.; Zhao, Y.; Ning, G. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Sci. Total Environ. 2020, 744, 140264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, Q.; Sun, P.; Singh, V.P.; Shi, P.; Song, C. Impact of urbanization on hourly precipitation in Beijing, China: Spatiotemporal patterns and causes. Glob. Planet. Chang. 2019, 172, 307–324. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q.; Li, J.; Singh, V.P.; Sun, P. Impact of urbanization on nonstationarity of annual and seasonal precipitation extremes in China. J. Hydrol. 2019, 575, 638–655. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, G.; Qin, Y.; Zhai, Y.; Zhai, T.; Tysa, S.K.; Xue, X.; Yang, G.; Sun, X. Urbanization effects on estimates of global trends in mean and extreme air temperature. J. Clim. 2021, 34, 1923–1945. [Google Scholar] [CrossRef]
- Qian, Y.; Chakraborty, T.; Li, J.; Li, D.; He, C.; Sarangi, C.; Chen, F.; Yang, X.; Leung, L.R. Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions. Adv. Atmos. Sci. 2022, 39, 819–860. [Google Scholar] [CrossRef]
Type | ID | Indicator Name | Definition | Unit | |
---|---|---|---|---|---|
Extreme Precipitation Indices | Intensity indices | RX1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
RX5day | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation | mm | ||
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP >= 1.0 mm) in the year | mm/d | ||
Relative indices | R95P | Very wet days | Annual total PRCP when RR > 95th percentile | mm | |
R99P | Extremely wet days | Annual total PRCP when RR > 99th percentile | mm | ||
Absolute indices | R20mm | Number of very heavy precipitation days | Annual count of days when PRCP >= 20 mm | d | |
R25mm | Number of extreme precipitation days | Number of days with PRCP >= 25 mm | d | ||
Duration indices | PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days (RR >= 1 mm) | mm | |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | d | ||
Extreme Temperature Indices | Absolute indices | FD0 | Frost days | Annual count when TN(daily minimum) < 0 °C | d |
Extreme-value indices | TXn | Min Tmax | Monthly minimum value of daily maximum temp | °C | |
TNn | Min Tmin | Monthly minimum value of daily minimum temp | °C | ||
Relative indices | TX10P | Cool days | Percentage of days when TX < 10th percentile | d | |
TN10P | Cool nights | Percentage of days when TN < 10th percentile | d | ||
TX90P | Warm days | Percentage of days when TX > 90th percentile | d | ||
TN90P | Warm nights | Percentage of days when TN > 90th percentile | d | ||
Other indices | DTR | Diurnal temperature range | Monthly mean difference between TX and TN | °C | |
GSL | Growing season length | Annual (1st Jan to 31st Dec in NH, 1st July to 30th June in SH) count between first span of at least 6 days with TG > 5 °C and first span after July 1 (January 1 in SH) of 6 days with TG < 5 °C | d |
Stations | RX1day (mm) | RX5day (mm) | SDII (mm/d) | R95P (mm) | R99P (mm) | R20mm (d) | R25mm (d) | PRCPTOT (mm) | CDD (d) |
---|---|---|---|---|---|---|---|---|---|
Zhangbei | 37.82 | 60.00 | 7.20 | 84.41 | 26.67 | 3.28 | 1.80 | 373.66 | 79.30 |
Weixian | 38.67 | 58.42 | 7.56 | 88.93 | 24.51 | 4.45 | 2.73 | 393.74 | 68.60 |
Xingtai | 79.61 | 125.82 | 11.29 | 145.27 | 50.80 | 6.55 | 4.80 | 492.88 | 71.33 |
Fengning | 47.57 | 74.84 | 8.67 | 105.41 | 30.52 | 5.18 | 3.40 | 440.55 | 91.95 |
Weichang | 46.31 | 74.74 | 8.09 | 107.70 | 32.76 | 5.00 | 3.48 | 431.36 | 76.85 |
Zhangjiakou | 39.01 | 60.42 | 7.71 | 88.21 | 24.32 | 4.33 | 2.63 | 386.26 | 75.25 |
Huailai | 41.48 | 59.89 | 8.04 | 83.84 | 26.05 | 4.18 | 2.38 | 373.53 | 85.35 |
Yanqing | 48.16 | 74.06 | 8.99 | 102.15 | 30.91 | 5.48 | 3.50 | 432.47 | 82.78 |
Miyun | 87.09 | 129.44 | 12.52 | 179.39 | 56.78 | 8.98 | 6.78 | 617.43 | 83.00 |
Chengde | 54.45 | 88.26 | 9.91 | 122.28 | 35.81 | 6.93 | 4.80 | 493.29 | 75.75 |
Zunhua | 85.31 | 127.75 | 12.91 | 182.76 | 54.69 | 9.75 | 7.13 | 653.39 | 73.68 |
Qinglong | 90.31 | 140.78 | 12.68 | 196.70 | 67.75 | 9.00 | 6.93 | 651.96 | 77.63 |
Qinhuangdao | 98.70 | 138.81 | 13.33 | 183.61 | 61.79 | 8.90 | 6.83 | 604.53 | 72.78 |
Beijing | 73.19 | 114.26 | 11.83 | 145.78 | 48.42 | 8.00 | 5.80 | 525.94 | 81.85 |
Bazhou | 72.96 | 107.32 | 11.50 | 135.11 | 39.41 | 6.60 | 5.00 | 468.86 | 84.68 |
Baodi | 81.17 | 121.56 | 12.53 | 153.47 | 51.52 | 8.33 | 6.40 | 553.77 | 78.93 |
Tianjin | 85.68 | 114.24 | 11.99 | 153.04 | 50.40 | 7.35 | 5.43 | 510.46 | 74.05 |
Tangshan | 75.77 | 111.18 | 12.78 | 156.37 | 47.78 | 8.60 | 6.80 | 572.61 | 71.20 |
Laoting | 88.22 | 128.91 | 12.86 | 173.63 | 54.93 | 8.40 | 6.53 | 573.96 | 63.53 |
Baoding | 68.87 | 101.46 | 11.40 | 131.95 | 42.81 | 7.23 | 5.38 | 485.88 | 79.38 |
Raoyang | 84.65 | 117.46 | 11.80 | 147.42 | 56.61 | 7.05 | 5.08 | 484.75 | 79.23 |
Botou | 90.05 | 126.11 | 12.56 | 162.10 | 56.70 | 7.55 | 5.65 | 520.00 | 75.75 |
Tanggu | 88.76 | 122.90 | 12.47 | 165.39 | 56.62 | 7.55 | 5.78 | 537.75 | 68.30 |
Huanghua | 85.22 | 119.91 | 12.35 | 158.92 | 52.45 | 7.85 | 5.98 | 541.53 | 68.40 |
Nangong | 70.23 | 104.14 | 10.77 | 128.03 | 44.43 | 6.48 | 4.78 | 450.78 | 73.35 |
Stations | FD0 (d) | TXn (°C) | TNn (°C) | TX10P (d) | TN10P (d) | TX90P (d) | TN90P (d) | DTR (°C) | GSL (d) |
---|---|---|---|---|---|---|---|---|---|
Zhangbei | 189.53 | −18.80 | −29.78 | 13.92 | 13.63 | 13.68 | 13.66 | 12.34 | 188.43 |
Weixian | 161.23 | −12.01 | −25.13 | 13.74 | 13.93 | 13.60 | 13.77 | 13.55 | 219.70 |
Xingtai | 86.73 | −3.21 | −10.62 | 13.90 | 13.70 | 13.80 | 13.75 | 9.86 | 275.18 |
Fengning | 171.95 | −12.59 | −23.61 | 13.67 | 13.65 | 13.89 | 13.55 | 13.88 | 214.85 |
Weichang | 180.10 | −15.58 | −24.93 | 13.81 | 13.74 | 13.77 | 13.67 | 13.01 | 202.88 |
Zhangjiakou | 143.38 | −11.64 | −20.27 | 13.88 | 13.77 | 13.74 | 13.64 | 11.59 | 227.70 |
Huailai | 139.90 | −9.96 | −18.51 | 13.74 | 13.76 | 13.63 | 13.69 | 11.84 | 233.70 |
Yanqing | 147.63 | −9.03 | −20.68 | 13.85 | 13.76 | 13.88 | 13.67 | 12.38 | 229.90 |
Miyun | 135.30 | −5.91 | -18.18 | 13.78 | 13.68 | 13.70 | 13.61 | 12.32 | 241.75 |
Chengde | 151.90 | −9.79 | −21.10 | 13.82 | 13.76 | 13.70 | 13.75 | 13.16 | 227.00 |
Zunhua | 128.50 | −5.96 | −17.30 | 13.87 | 13.88 | 13.83 | 13.63 | 11.55 | 244.60 |
Qinglong | 146.03 | −7.99 | −20.72 | 13.80 | 13.68 | 13.83 | 13.70 | 12.61 | 231.63 |
Qinhuangdao | 122.98 | −6.72 | −16.21 | 13.68 | 13.73 | 13.81 | 13.63 | 9.16 | 240.15 |
Beijing | 112.25 | −4.97 | −13.26 | 13.84 | 13.65 | 13.68 | 13.68 | 10.28 | 254.95 |
Bazhou | 117.03 | −4.69 | −15.53 | 13.71 | 13.82 | 13.73 | 13.67 | 11.18 | 252.70 |
Baodi | 126.78 | −5.68 | −16.16 | 13.94 | 13.67 | 13.72 | 13.64 | 11.50 | 244.60 |
Tianjin | 107.50 | −5.02 | −13.61 | 13.92 | 13.56 | 13.64 | 13.71 | 9.93 | 255.35 |
Tangshan | 123.58 | −6.22 | −17.16 | 13.89 | 13.66 | 13.67 | 13.62 | 11.02 | 245.25 |
Laoting | 121.63 | −6.49 | −16.05 | 13.96 | 13.85 | 13.84 | 13.75 | 10.02 | 244.65 |
Baoding | 106.55 | −4.28 | −13.56 | 13.78 | 13.73 | 13.83 | 13.75 | 10.54 | 259.83 |
Raoyang | 113.58 | −4.39 | −15.31 | 13.75 | 13.63 | 13.78 | 13.70 | 11.37 | 258.33 |
Botou | 107.40 | −4.41 | −14.58 | 13.76 | 13.68 | 13.75 | 13.80 | 10.77 | 260.50 |
Tanggu | 97.48 | −5.55 | −12.48 | 13.80 | 13.72 | 13.76 | 13.58 | 7.76 | 254.63 |
Huanghua | 108.08 | −5.00 | −13.95 | 13.73 | 13.77 | 13.67 | 13.68 | 10.20 | 255.95 |
Nangong | 107.03 | −3.73 | −14.24 | 13.78 | 13.62 | 13.80 | 13.67 | 11.34 | 263.48 |
Precipitation Indices | RX1day | RX5day | R95P | R99P | R20mm | R25mm | CDD | SDII | PRCPTOT |
Hurst | 0.4356 | 0.5312 | 0.4511 | 0.4302 | 0.6258 | 0.5512 | 0.1496 | 0.5543 | 0.5485 |
Temperature indices | FD0 | GSL | TXn | TNn | TN10P | TN90P | TX10P | TX90P | DTR |
Hurst | 0.8298 | 0.7133 | 0.5738 | 0.7149 | 0.9573 | 0.9305 | 0.6601 | 0.8092 | 0.8127 |
CDD | R99p | TXn | FD0 | |||||
---|---|---|---|---|---|---|---|---|
AWC | PASC(%) | AWC | PASC(%) | AWC | PASC(%) | AWC | PASC(%) | |
EA | 0.3380 | 1.10 | 0.3544 | 4.49 | 0.3234 | 0.51 | 0.4042 | 10.59 |
EAWR | 0.3911 | 3.46 | 0.5493 | 24.41 | 0.3312 | 7.21 | 0.4431 | 6.91 |
NAO | 0.4217 | 15.37 | 0.3486 | 6.62 | 0.3975 | 15.29 | 0.3714 | 7.35 |
PNA | 0.4248 | 7.28 | 0.3417 | 10.96 | 0.4124 | 5.96 | 0.3641 | 11.32 |
PolarEA | 0.3859 | 7.28 | 0.4711 | 23.97 | 0.4977 | 20.96 | 0.3529 | 4.19 |
SCAND | 0.4851 | 12.43 | 0.4572 | 16.69 | 0.2998 | 1.32 | 0.5813 | 33.31 |
WP | 0.3971 | 7.50 | 0.5595 | 34.56 | 0.3578 | 3.53 | 0.4820 | 14.49 |
AWC | PASC(%) | AWC | PASC(%) | ||
---|---|---|---|---|---|
CDD–PNA–NAO | 0.6993 | 16.32 | TXn-PolarEA-PNA | 0.7770 | 35.00 |
CDD–PNA–NAO–SCAND | 0.8851 | 34.71 | TXn-PolarEA-PNA-NAO | 0.8966 | 35.66 |
R99P–WP–EAWR | 0.7850 | 43.90 | FD0-SCAND-WP | 0.7527 | 17.94 |
R99P–WP–EAWR–PolarEA | 0.9311 | 58.68 | FD0-SCAND-WP-EAWR | 0.8705 | 23.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhao, A. Spatio–Temporal Variation of Extreme Climates and Its Relationship with Teleconnection Patterns in Beijing–Tianjin–Hebei from 1980 to 2019. Atmosphere 2022, 13, 1979. https://doi.org/10.3390/atmos13121979
Wang J, Zhao A. Spatio–Temporal Variation of Extreme Climates and Its Relationship with Teleconnection Patterns in Beijing–Tianjin–Hebei from 1980 to 2019. Atmosphere. 2022; 13(12):1979. https://doi.org/10.3390/atmos13121979
Chicago/Turabian StyleWang, Jinjie, and Anzhou Zhao. 2022. "Spatio–Temporal Variation of Extreme Climates and Its Relationship with Teleconnection Patterns in Beijing–Tianjin–Hebei from 1980 to 2019" Atmosphere 13, no. 12: 1979. https://doi.org/10.3390/atmos13121979
APA StyleWang, J., & Zhao, A. (2022). Spatio–Temporal Variation of Extreme Climates and Its Relationship with Teleconnection Patterns in Beijing–Tianjin–Hebei from 1980 to 2019. Atmosphere, 13(12), 1979. https://doi.org/10.3390/atmos13121979