Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa
Abstract
:1. Introduction
2. Empirical Literature Review
2.1. Impacts of Renewable Energy Consumption on Carbon Emissions
2.2. Impacts of Agricultural Production on Carbon Emissions
2.3. Impacts of Foreign Direct Investment (FDI) on Carbon Emissions
3. Methodology
3.1. Data Source
3.2. Econometric Strategy
4. Results and Discussion
4.1. Summary Statistics
4.2. Cross Section Dependence Test
4.3. Correlations among the Variables
4.4. Multicollinearity Test for the Independent Variables
4.5. Stationarity Test of the Variables
4.6. Cointegration Test
4.7. Panel ARDL Estimates of the Impacts of Agricultural Production, Renewable Use and Foreign Direct Investment on Greenhouse Gas Emissions
4.8. Granger Test for Panel Causality
4.9. Robustness Checks
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf (accessed on 23 November 2022).
- Olubusoye, O.E.; Musa, D. Carbon emissions and economic growth in Africa: Are they related? Cogent Econ. Financ. 2020, 8, 1850400. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022.
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WGIIIAR5_SPM_TS_Volume-3.pdf (accessed on 23 November 2022).
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf (accessed on 23 November 2022).
- Mrówczyńska-Kamińska, A.; Bajan, B.; Pawłowski, K.P.; Genstwa, N.; Zmyślona, J. Greenhouse gas emissions intensity of food production systems and its determinants. PLoS ONE 2021, 16, e0250995. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Alam, M.M.; Alvarado, R.; Işık, C.; Ahmad, F.; Cismas, L.M.; Pupazan, M.C.M. Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. J. Clean. Prod. 2022, 375, 134178. [Google Scholar] [CrossRef]
- International Monetary Fund. International Jobs Report; Economist Intelligence Unit, International Monetary Fund: Washington, DC, USA, 2012. [Google Scholar]
- OECD/Food and Agriculture Organization of the United Nations. Agriculture in Sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Food and Agriculture Organization. World Fertilizer Trends and Outlook to 2020: Summary Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: https://www.fao.org/3/i6895e/i6895e.pdf (accessed on 23 November 2022).
- African Union; Africa Fertilizer Financing Mechanism; United Nations Economic Commission for Africa. Promotion of Fertilizer Production, Cross Border Trade and Consumption in Africa; Special African Development administered Fund, Department of Agriculture and Agro-Industry: Abidjan, Côte d’Ivoire, 2019; Available online: https://www.afdb.org/sites/default/files/2019/10/21/cross-border_study.pdf (accessed on 16 November 2022).
- Ayompe, L.M.; Davis, S.J.; Egoh, B.N. Trends and drivers of African fossil fuel CO2 emissions 1990–2017. Environ. Res. Lett. 2021, 15, 124039. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. World Bank. 2022. Available online: https://databank.worldbank.org/source/world-development-indicators# (accessed on 23 November 2022).
- United Nations Conference on Trade and Development. World Investment Report 2022—International Tax Reforms and Sustainable Investment; United Nations: Geneva, Switzerland, 2022; Available online: https://unctad.org/system/files/official-document/wir2022_en.pdf (accessed on 23 November 2022).
- Acheampong, A.O. Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Econ. 2018, 74, 677–692. [Google Scholar] [CrossRef]
- Bozkurt, C.; Akan, Y. Economic growth, CO2 emissions and energy consumption: The Turkish case. Int. J. Energy Econ. Policy 2014, 3, 484–494. [Google Scholar]
- Dogan, E.; Seker, F. Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Hao, Y. The relationship between renewable energy consumption, carbon emissions, output, and export in industrial and agricultural sectors: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 63081–63098. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Onyeneke, R.U.; Emenekwe, C.C.; Munonye, J.O.; Nwajiuba, C.A.; Uwazie, U.I.; Amadi, M.U.; Izuogu, C.U.; Njoku, C.L.; Onyeneke, L.U. Progress in climate–agricultural vulnerability assessment in Nigeria. Atmosphere 2020, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Anum, R.; Ankrah, D.A.; Anaglo, J.N. Influence of demographic characteristics and social network on peri-urban smallholder farmers adaptation strategies-evidence from southern Ghana. Cogent Food Agric. 2022, 8, 2130969. [Google Scholar] [CrossRef]
- Cherni, A.; Jouini, S.E. An ARDL approach to the CO2 emissions, renewable energy and economic growth nexus: Tunisian evidence. Int. J. Hydrogen Energy 2017, 42, 29056–29066. [Google Scholar] [CrossRef]
- Radmehr, R.; Henneberry, R.S.; Shayanmehr, S. Renewable energy consumption, CO2 emissions, and economic growth nexus: A simultaneity spatial modeling analysis of EU countries. Struct. Chang. Econ. Dyn. 2021, 57, 13–27. [Google Scholar] [CrossRef]
- Balıbey, M. Relationships among CO2 emissions, economic growth and foreign direct investment and the environmental Kuznets curve hypothesis in Turkey. Int. J. Energy Econ. Policy 2015, 5, 1042–1049. [Google Scholar]
- Chaabouni, S.; Saidi, K. The dynamic links between carbon dioxide (CO2) emissions, health spending and GDP growth: A case study for 51 countries. Environ. Res. 2017, 158, 137–144. [Google Scholar] [CrossRef]
- Muhammad, B. Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North African countries. Energy 2019, 179, 232–245. [Google Scholar] [CrossRef]
- Saidi, K.; Hammami, S. The impact of energy consumption and CO2 emissions on economic growth: Fresh evidence from dynamic simultaneous-equations models. Sustain. Cities Soc. 2015, 14, 178–186. [Google Scholar] [CrossRef]
- Zaman, K.; Moemen, M. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sustain. Energy Rev. 2017, 74, 1119–1130. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Gorus, M.S.; Aydin, M. The relationship between energy consumption, economic growth, and CO2 emissions in MENA countries: Causality analysis in the frequency domain. Energy 2019, 168, 815–822. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J. Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries. Energy 2014, 73, 44–58. [Google Scholar] [CrossRef]
- Essandoh, O.K.; Islam, M.; Kakinaka, M. Linking international trade and foreign direct investment to CO2 emissions: Any differences between developed and developing countries? Sci. Total Environ. 2020, 712, 136437. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, X.; Cong, X. How does foreign direct investment affect CO2 emissions in emerging countries? New findings from a nonlinear panel analysis. J. Clean. Prod. 2020, 249, 119422. [Google Scholar]
- Atici, C. Carbon emissions, trade liberalization and the Japan—ASEAN interaction: A group wise examination. J. Jpn. Int. Econ. 2012, 26, 167–178. [Google Scholar] [CrossRef]
- Demena, B.A.; Afesorgbor, S.K. The effect of FDI on environmental emissions: Evidence from a meta-analysis. Energy Policy 2020, 138, 111192. [Google Scholar] [CrossRef]
- Phuong, N.D.; Tuyen, L.T.M. The relationship between foreign direct investment, economic growth and environmental pollution in Vietnam: An autoregressive distributed lags approach. Int. J. Energy Econ. Policy 2018, 8, 138–145. [Google Scholar]
- Bölük, G.; Mert, M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 2014, 74, 439–446. [Google Scholar]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Myszczyszyn, J.; Suproń, B. Relationship among economic growth (GDP), Energy consumption and carbon dioxide emission: Evidence from V4 Countries. Energies 2021, 14, 7734. [Google Scholar] [CrossRef]
- Gessesse, A.T.; He, G. Analysis of carbon dioxide emissions, energy consumption, and economic growth in China. Agric. Econ. 2020, 66, 183–192. [Google Scholar] [CrossRef]
- Tong, T.; Ortiz, J.; Xu, C.; Li, F. Economic growth, energy consumption, and carbon dioxide emissions in the E7 countries: A bootstrap ARDL bound test. Energy Sustain. Soc. 2020, 10, 20. [Google Scholar] [CrossRef]
- Aspergis, N.; Payne, J.E.; Menyah, K.; Wolde, R.Y. On the causal dynamic between emissions, nuclear energy, renewable energy and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Youssef, A.B.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.-T.; Tsai, C.-M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. CO2 emissions, energy consumption and economic growth in Association of Southeast Asian (ASEAN) countries: A cointegration approach. Energy 2013, 55, 813–822. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravcı, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Hasnisah, A.; Azlina, A.A.; Taib, C.M.I.C. The impact of renewable energy consumption on carbon dioxide emissions: Empirical evidence from developing countries in Asia. Int. J. Energy Econ. Policy 2019, 9, 135–143. [Google Scholar] [CrossRef]
- Nguyen, V.B. The difference in the FDI—CO2 emissions relationship between developed and developing countries. Hitotsubashi J. Econ. 2021, 62, 124–140. [Google Scholar]
- Shahbaz, M.; Nasreen, S.; Abbas, F.; Anis, O. Does foreign direct investment impede environmental quality in High-, Middle-, and Low-Income Countries? Energy Econ. 2015, 51, 275–287. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y. Impact of foreign direct investment on the carbon dioxide emissions of East Asian Countries based on a panel ARDL method. Front. Environ. Sci. 2022, 10, 937837. [Google Scholar] [CrossRef]
- Liu, X.; Wahab, S.; Hussain, M.; Sun, Y.; Kirikkaleli, D. China carbon neutrality target: Revisiting FDI-trade-innovation nexus with carbon emissions. J. Environ. Manag. 2021, 294, 113043. [Google Scholar] [CrossRef] [PubMed]
- Pegels, A.; Altenburg, T. Latecomer development in a “greening” world: Introduction to the Special Issue. World Dev. 2020, 135, 105084. [Google Scholar] [CrossRef]
- Rehman, A.; Ozturk, I.; Zhang, D. The causal connection between CO2 emissions and agricultural productivity in Pakistan: Empirical evidence from an autoregressive distributed lag bounds testing approach. Appl. Sci. 2019, 9, 1692. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Livestock Solutions for Climate Change; Food and Agriculture Organization: Rome, Italy, 2017; Available online: https://www.fao.org/3/i8098e/i8098e.pdf (accessed on 23 November 2022).
- Gani, A. Greenhouse emissions from the production of cereals and livestock across high-middle-and low income countries. Renew. Agric. Food Syst. 2022, 37, 36–48. [Google Scholar] [CrossRef]
- Wood-Sichra, U. Cereal crops. In Atlas of African Agriculture Research and Development: Revealing Agriculture’s Place in Africa; Sebastian, K., Ed.; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2014; pp. 20–21. Available online: https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/128734/filename/128945.pdf (accessed on 23 November 2022).
- Food and Agriculture Organization. Cereal Supply and Demand Balances for Sub-Saharan African Countries—Situation as of August 2022; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Suh, S.; Johnson, J.A.; Tambjerg, L.; Sim, S.; Broeckx-Smith, S.; Reyes, W.; Chaplin-Kramer, R. Closing yield gap is crucial to avoid potential surge in global carbon emissions. Glob. Environ. Chang. 2020, 63, 102100. [Google Scholar] [CrossRef]
- Sui, J.; Lv, W. Crop production and agricultural carbon emissions: Relationship diagnosis and decomposition analysis. Int. J. Environ. Res. Public Health. 2021, 18, 8219. [Google Scholar] [CrossRef]
- Systemiq. Reducing Emissions from Fertilizer Use; International Fertilizer Association: Paris, France, 2022; Available online: https://www.fertilizer.org/member/Download.aspx?PUBKEY=4B4097C4-D192-48C1-A3F0-EC1B4D0EA5FD (accessed on 20 November 2022).
- Food and Agriculture Organization. Emissions from Agricultural Agriculture and Forest Land. Global, Regional and Country Trends 1990–2019: FAOSTAT Analytical Brief 25; Food and Agriculture Organization: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb5293en/cb5293en.pdf (accessed on 20 November 2022).
- Menegat, S.; Ledo, A.; Tirado, R. Author correction: Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 19777. [Google Scholar] [CrossRef] [PubMed]
- İnal, V.; Addi, H.M.; Çakmak, E.E.; Torusdağ, M.; Çalışkan, M. The nexus between renewable energy, CO2 emissions, and economic growth: Empirical evidence from African oil-producing countries. Energy Rep. 2022, 8, 1634–1643. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.; Ferhi, S. Causal relationships between energy consumption, economic growth and CO2 emission in Sub-Saharan: Evidence from dynamic simultaneous-equations models. Mod. Econ. 2019, 10, 2157–2173. [Google Scholar] [CrossRef] [Green Version]
- Salim, R.A.; Rafiq, S. Why do some emerging economies proactively accelerate the adoption of renewable energy? Energy Econ. 2012, 34, 1051–1057. [Google Scholar] [CrossRef]
- Alam, M.J.; Begum, I.A.; Buysse, J.; Rahman, S.; Huylenbroeck, G.V. Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renew. Sustain. Energy Rev. 2011, 15, 3243–3251. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Pang, L.; Wang, L.; Zou, X. Simulation on China’s economy and prediction on energy consumption and carbon emission under optimal growth path. Acta Geogr. Sin. 2009, 64, 935–944. [Google Scholar]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Soytas, U.; Sari, R. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecol. Econ. 2009, 68, 1667–1675. [Google Scholar] [CrossRef]
- Appiah, K.; Du, J.; Poku, J. Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environ. Sci. Pollut. Res. 2018, 25, 24764–24777. [Google Scholar] [CrossRef]
- Naseem, S.; Guangji, T.; Kashif, U. Exploring the impact of energy consumption, food security on CO2 emissions: A piece of new evidence from Pakistan. Int. Energy J. 2020, 20, 115–128. [Google Scholar]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Czyżewski, A.; Michałowska, M. The impact of agriculture on greenhouse gas emissions in the Visegrad group countries after the World economic crisis of 2008: Comparative study of the researched Countries. Energies 2022, 15, 2268. [Google Scholar] [CrossRef]
- Zang, D.; Hu, Z.; Yang, Y.; He, S. Research on the relationship between agricultural carbon emission intensity, agricultural economic development and agricultural trade in China. Sustainability 2022, 14, 11694. [Google Scholar] [CrossRef]
- Haller, A. Influence of agricultural chains on the carbon footprint in the context of European Green Pact and crises. Agriculture 2022, 12, 751. [Google Scholar] [CrossRef]
- Adeleye, B.N.; Daramola, P.; Onabote, A.; Osabohien, R. Agro-productivity amidst environmental degradation and energy usage in Nigeria. Sci. Rep. 2021, 11, 18940. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, H.; Ozturk, I.; Ullah, S. Shocks in agricultural productivity and CO2 emissions: New environmental challenges for China in the green economy. Econ. Res.-Ekon. Istraz. 2022. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, F.; Wei, H.; Xiang, J.; Xu, Z.; Akram, R. The impacts of FDI inflows on carbon emissions: Economic development and regulatory quality as moderators. Front. Energy Res. 2022, 9, 820596. [Google Scholar] [CrossRef]
- Khalil, S.; Inam, Z. Is trade good for environment? A unit root cointegration analysis. Pak. Dev. Rev. 2006, 45, 1187–1196. [Google Scholar]
- Haug, A.A.; Ucal, M. The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships. Energy Econ. 2019, 81, 297–307. [Google Scholar] [CrossRef]
- Alshubiri, F.; Elheddad, M. Foreign finance, economic growth and CO2 emissions nexus in OECD Countries. Int. J. Clim. Chang. Strateg. Manag. 2019, 12, 161–181. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Adebayo, T.S. The symmetrical and asymmetrical effects of foreign direct investment and financial development on carbon emission: Evidence from Nigeria. SN Appl. Sci. 2020, 2, 1982. [Google Scholar] [CrossRef]
- Kumar, P.; Sahu, C.N.; Kumar, S.; Ansari, M.A. Impact of climate change on cereal production: Evidence from lower-middle-income countries. Environ. Sci. Pollut. Res. 2021, 28, 51597–51611. [Google Scholar] [CrossRef]
- Federal Ministry of Environment. Third National Communication (TNC) of the Federal Republic of Nigeria: Under the United Nations Framework Convention on Climate Change (UNFCCC); Federal Ministry of Environment: Abuja, Nigeria, 2020.
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- The World Bank Group. Agricultural Land (sq km)—Sub-Saharan Africa. 2022. Available online: https://data.worldbank.org/indicator/AG.LND.AGRI.K2?locations=ZG (accessed on 20 November 2022).
- Arouna, A.; Lokossou, J.C.; Wopereis, M.C.S.; Bruce-Oliver, S.; Roy-Macauley, H. Contribution of improved rice varieties to poverty reduction and food security in sub-Saharan Africa. Glob. Food Sec. 2017, 14, 54–60. [Google Scholar] [CrossRef]
- Asfew, M.; Bedemo, A. Impact of climate change on cereal crops production in Ethiopia. Adv. Agric. 2022, 2022, 2208694. [Google Scholar] [CrossRef]
- Gasser, T.; Crepin, L.; Quilcaille, Y.; Houghton, R.A.; Ciais, P.; Obersteiner, M. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences 2020, 17, 4075–4101. [Google Scholar] [CrossRef]
- van Loon, M.P.; Hijbeek, R.; ten Berge, H.F.M.; De Sy, V.; ten Broeke, G.A.; Solomon, D.; van Ittersum, M.K. Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa on greenhouse gas emissions and food security. Glob. Chang. Biol. 2019, 25, 3720–3730. [Google Scholar] [CrossRef]
- Elbatanony, M.; Attiaoui, I.; Ali, I.M.A.; Nasser, N.; Tarchoun, M. The environmental impact of remittance inflows in developing countries: Evidence from method of moments quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 48222–48235. [Google Scholar] [CrossRef]
- Balli, E.; Sigeze, C.; Ugur, M.S.; Çatık, A.N. The relationship between FDI, CO2 emissions, and energy consumption in Asia-Pacific economic cooperation countries. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lei, Y.; He, C.; Wu, S.; Chen, J. Prediction on the peak of the CO2 emissions in China using the STIRPAT model. Adv. Meteorol. 2016, 2016, 5213623. [Google Scholar] [CrossRef] [Green Version]
- Maroufi, N.; Hajilary, N. The impacts of economic growth, foreign direct investments, and gas consumption on the environmental Kuznets curve hypothesis CO2 emission in Iran. Environ. Sci. Pollut. Res. 2022, 29, 85350–85363. [Google Scholar] [CrossRef]
- Nguyen, K.H.; Kakinaka, M. Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis. Renew. Energy 2019, 132, 1049–1057. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2018, 9, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhani, S.; Shahbaz, M. What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region? Renew. Sustain. Energy Rev. 2014, 40, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Ponce, P.; Khan, S.A.R. A causal link between renewable energy, energy efficiency, property rights, and CO2 emissions in developed countries: A road map for environmental sustainability. Environ. Sci. Pollut. Res. 2021, 28, 37804–37817. [Google Scholar] [CrossRef]
- Koondhar, M.A.; Udemba, E.N.; Cheng, Y.; Khan, Z.A.; Koondhar, M.A.; Batool, M.; Kong, R. Asymmetric causality among carbon emission from agriculture, energy consumption, fertilizer, and cereal food production—A nonlinear analysis for Pakistan. Sustain. Energy Technol. Assess. 2021, 45, 101099. [Google Scholar] [CrossRef]
- Owino, C.N.; Kitaka, N.; Kipkemboi, J.; Ondiek, R.A. Assessment of greenhouse gases emission in smallholder rice paddies converted from Anyiko Wetland, Kenya. Front. Environ. Sci. 2020, 8, 80. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Soren, N.M.; Malik, P.K.; Ravindra, J.P.; Prasad, C.S.; Lal, R. Introduction to concepts of climate change impact on livestock and its adaptation and mitigation. In Climate Change Impact on Livestock: Adaptation and Mitigation; Sejian, V., Gaughan, J., Baumgard, L., Prasad, C., Eds.; Springer India: New Delhi, India, 2015. [Google Scholar]
- Akpan, S.B.; Udoh, E.J.; Umoren, A.A. Empirical linkage between foreign direct investment inflow and agricultural sub-sectoral productivity in Nigeria. Niger. J. Agric. Food Environ. 2017, 13, 50–59. [Google Scholar]
Serial Number | Country |
---|---|
1 | Algeria |
2 | Benin |
3 | Burkina Faso |
4 | Burundi |
5 | Cameroon |
6 | Central African Republic |
7 | Côte d’Ivoire |
8 | Egypt |
9 | Gabon |
10 | Ghana |
11 | Guinea |
12 | Kenya |
13 | Libya |
14 | Madagascar |
15 | Malawi |
16 | Mali |
17 | Mauritius |
18 | Morocco |
19 | Mozambique |
20 | Namibia |
21 | Niger |
22 | Nigeria |
23 | Rwanda |
24 | Senegal |
25 | South Africa |
26 | Togo |
27 | Tunisia |
28 | Uganda |
29 | Tanzania |
30 | Zambia |
31 | Zimbabwe |
Variables | Data Source |
---|---|
Land under cereal production (hectares) | World Development Indicator Database of World Bank |
Foreign direct investment net inflow (USD) | World Development Indicator Database of World Bank |
Livestock production index number (2014–2016 = 100) | FAOSTAT Database |
Renewable energy consumption (% of total final energy consumption) | World Development Indicator Database of World Bank |
Fertilizer consumption (kilograms per hectare of arable land) | World Development Indicator Database of World Bank |
Total greenhouse gas emissions (kilotons of CO2 equivalent) | World Development Indicator Database of World Bank |
Variables | Obs | Minimum | Maximum | Mean | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Land under cereal production (hectares) | 620 | 14.00 | 21,000,000.00 | 2,560,716.83 | 3,441,295.57 | 3.17 | 11.30 |
Foreign direct investment net inflow (USD) | 620 | −540,000,000 | 1,2000,000,000 | 1,018,455,178.6 | 1,733,325,147 | 3.02 | 10.14 |
Livestock production index | 620 | 26.12 | 162.27 | 87.5665 | 19.36403 | −0.429 | 0.465 |
Renewable energy consumption (% of total final energy consumption) | 620 | 0.06 | 96.04 | 61.54 | 31.87 | −0.83 | −0.94 |
Fertilizer consumption (kilograms per hectare of arable land) | 620 | 0.00 | 600.08 | 42.99 | 99.75 | 4.00 | 15.86 |
Total greenhouse gas emissions (kilotons of CO2 equivalent) | 620 | 1940.00 | 560,000.00 | 67,422.4516 | 107,521.70 | 2.78 | 7.77 |
Variable | CD-Test | p Value |
---|---|---|
lnY | 56.02 | 0.000 |
lnX1 | 22.09 | 0.000 |
lnX2 | 26.08 | 0.000 |
lnX3 | 36.92 | 0.000 |
lnX4 | 24.08 | 0.000 |
lnX5 | 64.12 | 0.000 |
Variables | lnY | lnX1 | lnX2 | lnX3 | lnX4 | lnX5 |
---|---|---|---|---|---|---|
lnY | 1.0000 | |||||
lnX1 | 0.4965 | 1.0000 | ||||
lnX2 | 0.3261 | 0.1797 | 1.0000 | |||
lnX3 | −0.4978 | 0.0747 | −0.0493 | 1.0000 | ||
lnX4 | 0.3264 | −0.1428 | 0.2206 | −0.4040 | 1.0000 | |
lnX5 | 0.2465 | −0.0053 | 0.1234 | −0.0841 | 0.1468 | 1.0000 |
Variable | Variance Inflation Factor |
---|---|
lnX1 | 1.072 |
lnX2 | 1.116 |
lnX3 | 1.199 |
lnX4 | 1.306 |
lnX5 | 1.032 |
H0 = All Panels Contain Unit Roots H0 = Series Have a Unit Roots | ||||
---|---|---|---|---|
Pesaran’s CADF Test | ||||
At Level I(0) | At First Difference I(1) | |||
Variable | t statistic | t statistic | Decision: H0 | Result |
lnY | −2.254 *** | −3.357 *** | Reject | I(0) at 1% |
lnX1 | −2.043 ** | −3.691 *** | Reject | I(0) at 5% |
lnX2 | −2.395 *** | −3.605 *** | Reject | I(0) at 1% |
lnX3 | −2.029 | −2.871 *** | Reject | I(1) at 1% |
lnX4 | −3.344 *** | −3.960 *** | Reject | I(0) at 1% |
lnX5 | −1.986 | −3.063 *** | Reject | I(1) at 1% |
Im–Pesaran–Shin unit root test | ||||
At level I(0) | At first difference I(1) | |||
Variable | t statistic | t statistic | Decision: H0 | Result |
lnY1 | −1.3056 | −9.1701 *** | Reject | I(1) at 1% |
lnX1 | −0.1979 | −9.9797 *** | Reject | I(1) at 1% |
lnX2 | −5.0580 *** | −14.4053 | Reject | I(0) at 1% |
lnX3 | 0.5124 | −6.1160 *** | Reject | I(1) at 1% |
lnX4 | −6.4631 *** | −12.4815 *** | Reject | I(0) at 1% |
lnX5 | 0.5981 | −7.8781 *** | Reject | I(1) at 1% |
H0: No Cointegration Ha: All Panels Are Cointegrated | ||
---|---|---|
Kao Test for Cointegration | ||
Test | Statistic | p Value |
Augmented Dickey–Fuller t | 2.5469 | 0.0054 |
Unadjusted modified Dickey–Fuller t | −3.4240 | 0.0003 |
Unadjusted Dickey–Fuller t | −3.1548 | 0.0008 |
Pedroni test for cointegration | ||
Test | Statistic | p Value |
Modified Phillips–Perron t | 5.9934 | 0.0000 |
Phillips–Perron t | −3.4469 | 0.0003 |
Augmented Dickey–Fuller t | −2.9261 | 0.0017 |
Variables | ||
---|---|---|
PMG | DFE | |
Panel A: Long-run estimates | ||
lnX1 | −0.05 | 0.004 |
(−1.19) | (0.06) | |
lnX2 | 0.01 | 0.01 |
(2.54) ** | (2.31) ** | |
lnX3 | −1.42 | −0.22 |
(−8.38) *** | (−2.37) ** | |
lnX4 | 0.13 | 0.04 |
(7.27) *** | (2.06) ** | |
lnX5 | 0.08 | 0.56 |
(1.69) * | (7.43) *** | |
Panel B: Short-run estimates | ||
ECT | 0.13 | 0.20 |
(3.08) *** | (7.67) *** | |
ΔlnX1 | 0.01 | 0.01 |
(0.53) | (1.02) | |
ΔlnX2 | 0.002 | 0.003 |
(0.58) | (3.91) *** | |
ΔlnX3 | −0.34 | −0.16 |
(−2.05) ** | (−4.15) *** | |
ΔlnX4 | 0.02 | 0.01 |
(2.12) ** | (4.04) *** | |
ΔlnX5 | 0.22 | 0.20 |
(3.44) *** | (4.11) *** | |
Constant | −2.05 | −1.64 |
(−3.03) *** | (−6.14) *** | |
Observations | 620 |
Hypothesis | Z-Bar | Z-Bar Tilde | Conclusion |
---|---|---|---|
lnY → lnX1 | 3.8727 *** | 2.5907 *** | Total greenhouse gas emissions Granger-causes land under cereal cultivation, and land under cereal cultivation Granger-causes total greenhouse gas emissions (bidirectional causality exists). |
lnX1 → lnY | 12.5735 *** | 9.4001 *** | |
lnY → lnX2 | −0.9436 | −1.1787 | Total greenhouse gas emissions does not Granger-cause net foreign direct investment, but net foreign direct investment does Granger-cause total greenhouse gas emissions (unidirectional causality exists). |
lnX2 → lnY | 6.0225 *** | 4.2732 *** | |
lnY → lnX3 | 3.8293 *** | 2.5567 ** | Total greenhouse gas emissions Granger-causes renewable energy consumption, and renewable energy consumption Granger-causes total greenhouse gas emissions (bidirectional causality exists). |
lnX3 → lnY | 7.2872 *** | 5.2629 *** | |
lnY → lnX4 | 3.4865 *** | 2.2884 ** | Total greenhouse gas emissions Granger-causes fertilizer consumption, and fertilizer consumption Granger-causes total greenhouse gas emissions (bidirectional causality exists). |
lnX4 → lnY | 12.9431 *** | 9.6894 *** | |
lnY → lnX5 | 6.0195 *** | 4.2708 *** | Total greenhouse gas emissions Granger-causes livestock production, and livestock production Granger-causes total greenhouse gas emissions (bidirectional causality exists) |
lnX5 → lnY | 4.6574 *** | 3.2048 *** | |
lnX1 → lnX2 | 1.1826 | 0.4854 | Land under cereal cultivation does not Granger-cause net foreign direct investment, but net foreign direct investment does Granger-cause land under cereal cultivation (unidirectional causality exists). |
lnX2 → lnX1 | 8.5073 *** | 6.2179 *** | |
lnX1 → lnX3 | 6.2233 *** | 4.4304 *** | Land under cereal cultivation does Granger-cause renewable energy consumption, but their bidirectional link could not be confirmed (unidirectional causality exists) |
lnX3 → lnX1 | 1.9912 ** | 1.1182 | |
lnX1 → lnX4 | −0.3359 | −0.7031 | Land under cereal cultivation does not Granger-cause fertilizer consumption, but fertilizer consumption does Granger-cause land under cereal cultivation (unidirectional causality exists). |
lnX4 → lnX1 | 5.0709 *** | 3.5284 *** | |
lnX1 → lnX5 | 12.6919 *** | 9.4928 *** | Land under cereal cultivation does Granger-cause livestock production, but their bidirectional link could not be confirmed (unidirectional causality exists). |
lnX5 → lnX1 | 1.7231 * | 0.9084 | |
lnX2 → lnX3 | 7.2518 *** | 5.2353 *** | Net foreign direct investment Granger-causes renewable energy consumption, and renewable energy consumption Granger-causes net foreign direct investment (bidirectional causality exists). |
lnX3 → lnX2 | 3.6040 *** | 2.3804 ** | |
lnX2 → lnX4 | 3.4259 *** | 2.2410 ** | Net foreign direct investment does Granger-cause fertilizer consumption, but their bidirectional link could not be confirmed (unidirectional causality exists). |
lnX4 → lnX2 | 1.9748 ** | 1.1054 | |
lnX2 → lnX5 | 11.7345 *** | 8.7435 *** | Net foreign direct investment does Granger-cause livestock production, but livestock production does not Granger-cause net foreign direct investment (unidirectional causality exists). |
lnX5 → lnX2 | 0.7712 | 0.1634 | |
lnX3 → lnX4 | 1.0837 | 0.4079 | Renewable energy consumption does not Granger-cause fertilizer consumption, but fertilizer consumption does Granger-cause renewable energy consumption (unidirectional causality exists). |
lnX4 → lnX3 | 13.2044 *** | 9.8939 *** | |
lnX3 → lnX5 | 8.0205 *** | 5.8369 *** | Renewable energy consumption Granger-causes livestock production, and livestock production Granger-causes renewable energy consumption (bidirectional causality exists). |
lnX5 → lnX3 | 4.1889 *** | 2.8381 *** | |
lnX4 → lnX5 | 11.3327 *** | 8.4291 *** | Fertilizer consumption does Granger-cause livestock production, but livestock production does not Granger-cause fertilizer consumption (unidirectional causality exists). |
lnX5 → lnX4 | 0.7900 | 0.1781 |
Variables | DFE Long-Run Estimates | Fixed-Effect Estimates | Random Effect Estimates | OLS Estimates |
---|---|---|---|---|
lnX1 | 0.004 | 0.04 | 0.06 | 0.31 |
(0.06) | (2.61) *** | (3.77) *** | (20.70) *** | |
lnX2 | 0.01 | 0.006 | 0.006 | 0.04 |
(2.31) ** | (5.22) *** | (5.09) *** | (5.89) *** | |
lnX3 | −0.22 | −0.19 | −0.21 | −0.43 |
(−2.37) ** | (−6.39) *** | (−7.23) *** | (−16.75) *** | |
lnX4 | 0.04 | 0.02 | 0.02 | 0.11 |
(2.06) ** | (4.71) *** | (4.57) *** | (5.74) *** | |
lnX5 | 0.56 | 0.59 | 0.58 | 0.83 |
(7.43) *** | (25.42) *** | (24.25) *** | (6.77) *** | |
Constant | −2.05 | 7.59 | 25.03 | 2.88 |
(−3.03) *** | (27.64) *** | (7.47) *** | (4.90) *** | |
Breusch–Pagan/Cook–Weisberg test for heteroskedasticity Assumption: Normal error terms | H0: Constant variance chi2(1) = 0.03 Prob > chi2 = 0.8566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chidiebere-Mark, N.M.; Onyeneke, R.U.; Uhuegbulem, I.J.; Ankrah, D.A.; Onyeneke, L.U.; Anukam, B.N.; Chijioke-Okere, M.O. Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa. Atmosphere 2022, 13, 1981. https://doi.org/10.3390/atmos13121981
Chidiebere-Mark NM, Onyeneke RU, Uhuegbulem IJ, Ankrah DA, Onyeneke LU, Anukam BN, Chijioke-Okere MO. Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa. Atmosphere. 2022; 13(12):1981. https://doi.org/10.3390/atmos13121981
Chicago/Turabian StyleChidiebere-Mark, Nneka Maris, Robert Ugochukwu Onyeneke, Ifeyinwa Josephine Uhuegbulem, Daniel Adu Ankrah, Louis Uchenna Onyeneke, Basil Ngozichukwu Anukam, and Maureen Obiageli Chijioke-Okere. 2022. "Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa" Atmosphere 13, no. 12: 1981. https://doi.org/10.3390/atmos13121981
APA StyleChidiebere-Mark, N. M., Onyeneke, R. U., Uhuegbulem, I. J., Ankrah, D. A., Onyeneke, L. U., Anukam, B. N., & Chijioke-Okere, M. O. (2022). Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa. Atmosphere, 13(12), 1981. https://doi.org/10.3390/atmos13121981