Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Sample Collection and Index Determination
2.3.1. Soil Respiration Measurement
2.3.2. Soil Hydrothermal Factor Determination
2.3.3. Collection and Determination of Soil Samples
2.4. Statistical Analyses
3. Results and Analysis
3.1. Soil Nutrient Content Dynamics
3.2. Soil SOC Fraction Response
3.3. Annual Variation in Soil Respiration Rate
3.4. Fitting Relationship between Soil Respiration Rate and Hydrothermal Factors
3.5. Correlation Analysis of Soil Respiration and Soil Organic Carbon with Environmental Factors
4. Discussion
4.1. Effect of Applying Biochar on Soil Nutrients
4.2. Influence of Applied Biochar on SOC Fraction
4.3. Influence of Applied Biochar on Soil Respiration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontaine, S.; Bardoux, G.; Abbadie, L.; Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004, 7, 579. [Google Scholar] [CrossRef]
- Liang, T.; Zhao, Z.; Liu, Q.; Zou, Y.; Wang, J.; Dai, H.; Wang, A.; Zhang, Y. Effects of organic manure on soil organic carbon composition and CO2 emission in tobacco planting field. Tob. Sci. Technol. 2017, 50, 8–13. [Google Scholar]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 2009, 155, 211–223. [Google Scholar] [CrossRef]
- Song, G.; Li, L.; Pan, G.; Zhang, Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, N.; Lu, Y.; Han, X.; Yang, Z. Effects of supplementary irrigation on soil respiration of millet farmland in a semi-arid region in China. Atmosphere 2022, 13, 584. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, J.; Yang, X.; Han, X.; Lan, Y.; Cao, D.; Sun, Q.; Cui, X.; Meng, J.; Chen, W. Responses of soil respiration and C sequestration efficiency to biochar amendment in maize field of Northeast China. Soil Tillage Res. 2022, 223, 105442. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Suha, U.O.; Babur, E.; Alma, M.H.; Solaiman, Z.M. Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture 2020, 10, 427. [Google Scholar]
- Phares, C.A.; Akaba, S. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice. J. Integr. Agric. 2022, in press. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, J.; Han, L.; Ma, S.; Sun, X.; Huang, G. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresour. Technol. 2017, 241, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Allahyar, K.; Fayez, R.; Hossein, B.; Ali, K.M. The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar 2021, 3, 105–116. [Google Scholar]
- Nan, H.; Mašek, O.; Yang, F.; Xu, X.; Qiu, H.; Cao, X.; Zhao, L. Minerals: A missing role for enhanced biochar carbon sequestration from the thermal conversion of biomass to the application in soil. Earth-Sci. Rev. 2022, 234, 104215. [Google Scholar] [CrossRef]
- Walkiewicz, A.; Kalinichenko, K.; Kubaczyński, A.; Brzezińska, M.; Bieganowski, A. Usage of biochar for mitigation of CO2 emission and enhancement of CH4 consumption in forest and orchard Haplic Luvisol (Siltic) soils. Appl. Soil Ecol. 2020, 156, 103711. [Google Scholar] [CrossRef]
- Jiang, B.N.; Lu, M.B.; Zhang, Z.Y.; Xie, B.L.; Song, H.L. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. Sci. Total Environ. 2022, 855, 158688. [Google Scholar] [CrossRef]
- Rittl, T.F.; Canisares, L.; Sagrilo, E.; Butterbach-Bahl, K.; Dannenmann, M.; Cerri, C.E.P. Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type. Pedosphere 2020, 30, 336–342. [Google Scholar] [CrossRef]
- Gogoi, L.; Narzari, R.; Gogoi, N.; Borkotoki, B.; Kataki, R. Effect of biochar on soil respiration from a semi-evergreen, moist deciduous forest soil. Int. J. Geosynth. Ground Eng. 2020, 6, 214. [Google Scholar] [CrossRef]
- Ge, X.; Cao, Y.; Zhou, B.; Xiao, W.; Li, M. Combined application of biochar and N increased temperature sensitivity of soil respiration but still decreased the soil CO2 emissions in moso bamboo plantations. Sci. Total Environ. 2020, 730, 139003. [Google Scholar] [CrossRef]
- Dinesh, M.; Kumar, A.; Ankur, S.; Manvendra, P.; Prachi, S.; Pittman, C. Biochar production and applications in soil fertility and carbon sequestration—A sustainable solution to crop-residue burning in India. RSC Adv. 2018, 8, 508–520. [Google Scholar]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.-C.; Zackrisson, O. Fire-Derived charcoal causes loss of forest humus. Science 2008, 320, 629. [Google Scholar] [CrossRef]
- Zygourakis, K. Biochar soil amendments for increased crop yields: How to design a “designer” biochar. AIChE J. 2017, 63, 870. [Google Scholar] [CrossRef]
- Wei, O.; Xiaojun, G.; Wejia, H.; Fanghua, H.; Jinbo, Z. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area. Environ. Sci. Pollut. Res. Int. 2016, 23, 2279–2287. [Google Scholar]
- Xi, Z.; Qianqian, Z.; Liping, Z.; Xintong, X.; Ruiyu, B.; Zhengqin, X. Biochar addition stabilized soil carbon sequestration by reducing temperature sensitivity of mineralization and altering the microbial community in a greenhouse vegetable field. J. Environ. Manag. 2022, 313, 114972. [Google Scholar]
- Cui, J.; Glatzel, S.; Bruckman, V.J.; Wang, B.; Lai, D.Y.F. Long-term effects of biochar application on greenhouse gas production and microbial community in temperate forest soils under increasing temperature. Sci. Total Environ. 2021, 767, 145021. [Google Scholar] [CrossRef]
- Nielsen, C.B.; Groffman, P.M.; Hamburg, S.P.; Driscoll, C.T.; Fahey, T.J.; Hardy, J.P. Freezing Effects on carbon and nitrogen cycling in Northern Hardwood forest soils. Soil Sci. Soc. Am. J. 2001, 65, 1723–1730. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tian, D.; Huang, R.; Xu, G.; Li, J.; Gao, M.; Wang, Z. Effects of straw and biochar addition on soil carbon balance and ecological benefits in a rape-maize rotation plantingsystem. Environ. Sci. 2018, 39, 4338–4347. [Google Scholar]
- Bradford, M.A.; Fierer, N.; Reynolds, J.F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 2008, 22, 964–974. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong JT, F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Sorrenti, G.; Muzzi, E.; Toselli, M. Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Sci. Hortic. 2019, 257, 108710. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193–194, 122–130. [Google Scholar] [CrossRef]
- Wang, X.; Yin, D.; Zhang, F.; Tan, C.; Peng, B. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality. Trans. Chin. Soc. Agric. Eng. 2015, 31, 248–257. [Google Scholar]
- Saleh, M.E.; Mahmoud, A.H.; Rashad, M. In peanut bichar as astable adsorbent for removing -N from wastwater: A preliminary study. Sixt. Int. Water Technol. Conf. Proc. 2012, 16, 1257–1266. [Google Scholar]
- Lai, X.; Ren, X.; Zhu, K.; Yan, C.; Yu, J. Effects of tillage systems on labile fractions of soil organic nitrogen of a freeze-thaw agricultural area in northeast China. IOP Conf. Ser. Earth Environ. Sci. 2020, 435, 210–217. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Ángela, M.G.; Jorge, P.; Carolina, E. Overview of the use of biochar from main cereals to stimulate plant growth. Front. Plant Sci. 2022, 13, 912264. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14 C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.F.; Wander, M.M. A wide view of no-tillage practices and soil organic carbon sequestration. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 523–530. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M. Role of biochar amendment on soil carbon mineralization and microbial biomass. J. Geosci. Environ. Prot. 2018, 6, 173. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Lu, S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Wang, G.; Zhao, X.; Chen, C.; Huang, X. Effect on long-term fertilization on labile organic carbon in cinnamon soil. Chin. J. Ecol. 2015, 34, 1223–1228. [Google Scholar]
- Feng, W.; Plante, A.F.; Aufdenkampe, A.K.; Six, J. Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol. Biochem. 2014, 69, 398–405. [Google Scholar] [CrossRef]
- Huang, R.; Tian, D.; Liu, J.; Lv, S.; He, X.; Gao, M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 2018, 265, 576–586. [Google Scholar] [CrossRef]
- Alexandra, K.; Balwant, S.; Pal, S.B. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ. Sci. Technol. 2011, 45, 9611–9618. [Google Scholar]
- Chen, S.; Xu, C.; Yan, J.; Zhang, X.; Zhang, X.; Wang, D. The influence of the type of crop residue on soil organic carbon fractions: An 11-year field study of rice-based cropping systems in southeast China. Agric. Ecosyst. Environ. 2016, 223, 261–269. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, X.; Li, W.; Sun, G.; Chen, K. Effects on long-term different fertilization regimes on the rhizospheric microbial community functional diversity in paddy field. Ecol. Environ. Sci. 2016, 25, 402–408. [Google Scholar]
- Sackett, T.E.; Basiliko, N.; Noyce, G.L.; Winsborough, C.; Schurman, J.; Ikeda, C.; Thomas, S.C. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 2015, 7, 1062–1074. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy 2016, 8, 265. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Chang, S.X.; Zhang, J.; Jiang, P.; Zhou, G.; Shen, Z. Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol. Fertil. Soils 2014, 50, 1109–1119. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Fu, Q.; Li, H.; Liu, D.; Ji, Y.; Li, Q.; Cai, Y. Biochar application for the improvement of water-soil environments and carbon emissions under freeze-thaw conditions: An in-situ field trial. Sci. Total Environ. 2020, 723, 138007. [Google Scholar] [CrossRef]
- Chen, J.; Sun, X.; Zheng, J.; Zhang, X.; Liu, X. Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol. Fertil. Soils 2018, 54, 175–188. [Google Scholar] [CrossRef]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China plain. Plant Soil 2012, 351, 263–275. [Google Scholar] [CrossRef]
Stage | 2019–2020 Freezing and Thawing Period (FTP1) | 2019–2020 Crop-Growing Period (CP1) | 2020–2021 Freezing and Thawing Period (FTP2) | 2020–2021 Crop-Growing Period (CP2) | ||||
---|---|---|---|---|---|---|---|---|
First Freezing Period (FFP1) | Freezing Period (FP1) | Thawing Period (TP1) | First Freezing Period (FFP2) | Freezing Period (FP2) | Thawing Period (TP2) | |||
Start time | 5 November 2019 | 16 December 2019 | 21 February 2020 | 27 May 2020 | 2 November 2020 | 2 December 2020 | 28 February 2021 | 29 May 2021 |
End time | 16 December 2019 | 21 February 2020 | 15 April 2020 | 17 September 2020 | 2 December 2020 | 28 February 2021 | 15 April 2021 | 25 September 2021 |
Soil Parameter | Test Method | Equipment |
---|---|---|
Soil moisture content | Drying | Blast soil drying oven (101-3) |
Soil temperature | NA | Soil temperature sensor (TM-03) |
Fast-acting potassium | 0.5 mol/L NaHCO3 and molybdenum antimony sulfate | UV-Vis spectrophotometer (UV-5300PC) |
Alkali-hydrolyzable N | 1.0 mol/L NaOH alkaline diffusion | NA |
Fast-acting phosphorus | via ammonium acetate (pH 7.0) | Flame photometer (Sherwood M410) |
-N | 2 mol/L potassium chloride solution | Flow analyzer (AA3) |
-N | ||
Soil organic carbon | Digestion method using potassium dichromate | NA |
Particulate organic carbon | Using a chemical dispersant (sodium hexametaphosphate: NaHMP) followed by physical fractionation [29] | NA |
Mineral-associated organic carbon | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Qu, Z.; Liu, L.; Yang, W.; Wang, L.; Li, J.; Zhang, D. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere 2022, 13, 2038. https://doi.org/10.3390/atmos13122038
Zhang R, Qu Z, Liu L, Yang W, Wang L, Li J, Zhang D. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere. 2022; 13(12):2038. https://doi.org/10.3390/atmos13122038
Chicago/Turabian StyleZhang, Ruxin, Zhongyi Qu, Lu Liu, Wei Yang, Liping Wang, Junjie Li, and Dongliang Zhang. 2022. "Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors" Atmosphere 13, no. 12: 2038. https://doi.org/10.3390/atmos13122038
APA StyleZhang, R., Qu, Z., Liu, L., Yang, W., Wang, L., Li, J., & Zhang, D. (2022). Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere, 13(12), 2038. https://doi.org/10.3390/atmos13122038