Reducing Particle Exposure and SARS-CoV-2 Risk in Built Environments through Accurate Virtual Twins and Computational Fluid Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Simulation Setup
3. Results and Discussion
3.1. Validation of Simulated Particle Modelling
3.1.1. Room Clearing Scenario
3.1.2. Room Seeding Scenario
3.2. Leveraging Simulation to Improve Room Layouts: Coughing Scenario
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morawska, L.; Cao, J. Airborne Transmission of SARS-CoV-2: The World Should Face the Reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying Airborne Transmission as the Dominant Route for the Spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [Google Scholar] [CrossRef]
- Somsen, G.A.; van Rijn, C.; Kooij, S.; Bem, R.A.; Bonn, D. Small Droplet Aerosols in Poorly Ventilated Spaces and SARS-CoV-2 Transmission. Lancet Respir. Med. 2020, 8, 658–659. [Google Scholar] [CrossRef]
- Asbach, C.; Held, A.; Kiendler-Scharr, A.; Scheuch, G.; Schmid, H.-J.; Schmitt, S.; Schumacher, S.; Wehner, B.; Weingartner, E.; Weinzierl, B.; et al. Position Paper of the Gesellschaft Für Aerosolforschung on Understanding the Role of Aerosol Particles in SARS-CoV-2 Infection; Association for Aerosol Research: Raleigh, NC, USA, 2021. [Google Scholar] [CrossRef]
- Held, A.; Dellweg, D.; Köhler, D.; Pfaender, S.; Scheuch, G.; Schumacher, S.; Steinmann, E.; Weingartner, E.; Weinzierl, B.; Asbach, C. Interdisciplinary Perspectives on the Role of Aerosol Transmission in SARS-CoV-2 Infections. Gesundh. Bundesverb. Arzte Offentlichen Gesundh. Ger. 2022, 84, 566–574. [Google Scholar] [CrossRef]
- Scheuch, G. Breathing Is Enough: For the Spread of Influenza Virus and SARS-CoV-2 by Breathing Only. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 230–234. [Google Scholar] [CrossRef]
- Mittal, R.; Ni, R.; Seo, J.-H. The Flow Physics of COVID-19. J. Fluid Mech. 2020, 894, F2. [Google Scholar] [CrossRef]
- Bourouiba, L.; Dehandschoewercker, E.; Bush, J.W.M. Violent Expiratory Events: On Coughing and Sneezing. J. Fluid Mech. 2014, 745, 537–563. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond; Clarendon Press: Oxford, UK, 2001; ISBN 978-0-19-850398-9. [Google Scholar]
- Duda, B.M.; Laskowksi, G.M. Lattice-Boltzmann Very Large Eddy Simulations of the NASA Juncture Flow Model. In AIAA Scitech 2020 Forum; AIAA SciTech Forum; American Institute of Aeronautics and Astronautics: Reston, VI, USA, 2020. [Google Scholar]
- Ahmadzadeh, M.; Shams, M. Multi-Objective Performance Assessment of HVAC Systems and Physical Barriers on COVID-19 Infection Transmission in a High-Speed Train. J. Build. Eng. 2022, 53, 104544. [Google Scholar] [CrossRef]
- Wang, M.; Lin, C.-H.; Chen, Q. Advanced Turbulence Models for Predicting Particle Transport in Enclosed Environment. Build. Environ. 2012, 47, 40–49. [Google Scholar] [CrossRef]
- Ivanova, E.; Noll, B.; Aigner, M. RANS and LES of Turbulent Mixing in Confined Swirling and Non-Swirling Jets. In Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar]
- Chen, Q. Ventilation Performance Prediction for Buildings: A Method Overview and Recent Applications. Build. Environ. 2009, 44, 848–858. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef] [Green Version]
- Fierz, M.; Meier, D.; Steigmeier, P.; Burtscher, H. Aerosol Measurement by Induced Currents. Aerosol Sci. Technol. 2014, 48, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Todea, A.M.; Beckmann, S.; Kaminski, H.; Asbach, C. Accuracy of Electrical Aerosol Sensors Measuring Lung Deposited Surface Area Concentrations. J. Aerosol Sci. 2015, 89, 96–109. [Google Scholar] [CrossRef]
- Burr, K.P.; Akylas, T.R.; Mei, C.C. Chapter Two Two-Dimensional Laminar Boundary Layers; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Chen, S.; Doolen, G.D. Lattice Boltzmann Method for Fluid Flow. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Ferziger, J.H.; Kaper, H.G. Mathematical Theory of Transport Processes in Gases. Am. J. Phys. 1973, 41, 601–603. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Staroselsky, I.; Chen, H. Numerical Simulation of Laminar and Turbulent Buoyancy-Driven Flows Using a Lattice Boltzmann Based Algorithm. Int. J. Heat Mass Transf. 2004, 47, 4869–4879. [Google Scholar] [CrossRef]
- Li, Y.; Shock, R.; Zhang, R.; Chen, H. Numerical Study of Flow Past an Impulsively Started Cylinder by the Lattice-Boltzmann Method. J. Fluid Mech. 2004, 519, 273–300. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Chapman, S. The Mathematical Theory of Non-uniform Gases: An Account Of The Kinetic Theory Of Viscosity, Thermal Conduction and Diffusion. In Gases, 3rd ed.; Cambridge University Press: New York, NY, USA, 1991; ISBN 978-0-521-40844-8. [Google Scholar]
- Kotapati, R.; Keating, A.; Kandasamy, S.; Duncan, B.; Shock, R.; Chen, H. The Lattice-Boltzmann-VLES Method for Automotive Fluid Dynamics Simulation, A Review; SAE: Warrendale, PA, USA, 2009. [Google Scholar]
- Chen, H.; Chen, S.; Matthaeus, W.H. Recovery of the Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method. Phys. Rev. A 1992, 45, R5339–R5342. [Google Scholar] [CrossRef]
- Chen, H.; Kandasamy, S.; Orszag, S.; Shock, R.; Succi, S.; Yakhot, V. Extended Boltzmann Kinetic Equation for Turbulent Flows. Science 2003, 301, 633–636. [Google Scholar]
- Mundo, C.H.R.; Sommerfeld, M.; Tropea, C. Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process. Int. J. Multiph. Flow 1995, 21, 151–173. [Google Scholar] [CrossRef]
- O’Rourke, P.J.; Amsden, A.A. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- O’Rourke, P.J.; Amsden, A.A. The Tab Method for Numerical Calculation of Spray Droplet Breakup; SAE International: Warrendale, PA, USA, 1987. [Google Scholar]
- Shiller, L.; Naumann, A. A Drag Coefficient Correlation. Z. Ver. Dtsch. Ing. 1935, 77, 318–320. [Google Scholar]
- Tumforde, T.; Wischhusen, S.; Nagarajan, V.; Luzzato, C.; Heinrich, A.A.; Lebrun, V.-M.; Mann, A. Balancing Interior Environmental Quality and HVAC Energy Efficiency Using 1D and 3D Simulation; NAFEMS World Congress 2021. In Proceedings of the NAFEMS World Congress 2021, Berlin, Germany, 21 October 2021. [Google Scholar]
- Küpper, M.; Asbach, C.; Schneiderwind, U.; Finger, H.; Spiegelhoff, D.; Schumacher, S. Testing of an Indoor Air Cleaner for Particulate Pollutants under Realistic Conditions in an Office Room. Aerosol Air Qual. Res. 2019, 19, 1655–1665. [Google Scholar] [CrossRef] [Green Version]
- Szabadi, J.; Meyer, J.; Lehmann, M.; Dittler, A. Simultaneous Temporal, Spatial and Size-Resolved Measurements of Aerosol Particles in Closed Indoor Environments Applying Mobile Filters in Various Use-Cases. J. Aerosol Sci. 2022, 160, 105906. [Google Scholar] [CrossRef]
- Curtius, J.; Granzin, M.; Schrod, J. Testing Mobile Air Purifiers in a School Classroom: Reducing the Airborne Transmission Risk for SARS-CoV-2. Aerosol Sci. Technol. 2021, 55, 586–599. [Google Scholar] [CrossRef]
- Schumacher, S.; Spiegelhoff, D.; Schneiderwind, U.; Finger, H.; Asbach, C. Performance of New and Artificially Aged Electret Filters in Indoor Air Cleaners. Chem. Eng. Technol. 2018, 41, 27–34. [Google Scholar] [CrossRef]
- Schumacher, S.; Banda Sanchez, A.; Caspari, A.; Staack, K.; Asbach, C. Testing Filter-Based Air Cleaners with Surrogate Particles for Viruses and Exhaled Droplets. Atmosphere 2022, 13, 1538. [Google Scholar] [CrossRef]
- Chen, H. Large Eddy Simulation of Turbulence Via Lattice Boltzmann Based Approach: Fundamental Physics and Practical Applications. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains; McCallen, R., Browand, F., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; p. 123. [Google Scholar]
- Labois, M.; Lakehal, D. Very-Large Eddy Simulation (V-LES) of the Flow across a Tube Bundle. Nucl. Eng. Des. 2011, 241, 2075–2085. [Google Scholar] [CrossRef]
- Gupta, J.K.; Lin, C.-H.; Chen, Q. Flow Dynamics and Characterization of a Cough. Indoor Air 2009, 19, 517–525. [Google Scholar] [CrossRef]
- Zayas, G.; Chiang, M.C.; Wong, E.; MacDonald, F.; Lange, C.F.; Senthilselvan, A.; King, M. Cough Aerosol in Healthy Participants: Fundamental Knowledge to Optimize Droplet-Spread Infectious Respiratory Disease Management. BMC Pulm. Med. 2012, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Lindsley, W.G.; Pearce, T.A.; Hudnall, J.B.; Davis, K.A.; Davis, S.M.; Fisher, M.A.; Khakoo, R.; Palmer, J.E.; Clark, K.E.; Celik, I.; et al. Quantity and Size Distribution of Cough-Generated Aerosol Particles Produced by Influenza Patients during and after Illness. J. Occup. Environ. Hyg. 2012, 9, 443–449. [Google Scholar] [CrossRef]
Cumulative Personal Exposure [m−3s] | 10 min | 15 min | 20 min | 25 min | 30 min |
---|---|---|---|---|---|
Location 1 | 8012 | 10,398 | 12,145 | 13,347 | 14,159 |
Location 2 | 7308 | 9493 | 11,126 | 12,275 | 13,062 |
Location 3 | 7474 | 9770 | 11,307 | 12,438 | 13,100 |
Location 4 | 7576 | 9536 | 11,013 | 11,988 | 12,631 |
Location 5 | 7808 | 9934 | 11,467 | 12,521 | 13,327 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero, F.; Nagarajan, V.; Schumacher, S.; Todea, A.M.; Lindermann, J.; Asbach, C.; Luzzato, C.M.A.; Jilesen, J. Reducing Particle Exposure and SARS-CoV-2 Risk in Built Environments through Accurate Virtual Twins and Computational Fluid Dynamics. Atmosphere 2022, 13, 2032. https://doi.org/10.3390/atmos13122032
Quintero F, Nagarajan V, Schumacher S, Todea AM, Lindermann J, Asbach C, Luzzato CMA, Jilesen J. Reducing Particle Exposure and SARS-CoV-2 Risk in Built Environments through Accurate Virtual Twins and Computational Fluid Dynamics. Atmosphere. 2022; 13(12):2032. https://doi.org/10.3390/atmos13122032
Chicago/Turabian StyleQuintero, Fabian, Vijaisri Nagarajan, Stefan Schumacher, Ana Maria Todea, Jörg Lindermann, Christof Asbach, Charles M. A. Luzzato, and Jonathan Jilesen. 2022. "Reducing Particle Exposure and SARS-CoV-2 Risk in Built Environments through Accurate Virtual Twins and Computational Fluid Dynamics" Atmosphere 13, no. 12: 2032. https://doi.org/10.3390/atmos13122032
APA StyleQuintero, F., Nagarajan, V., Schumacher, S., Todea, A. M., Lindermann, J., Asbach, C., Luzzato, C. M. A., & Jilesen, J. (2022). Reducing Particle Exposure and SARS-CoV-2 Risk in Built Environments through Accurate Virtual Twins and Computational Fluid Dynamics. Atmosphere, 13(12), 2032. https://doi.org/10.3390/atmos13122032