Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts
Abstract
:1. Introduction
2. Brief Description of Tropical Storm Dianmu, 2021
3. Methodology and Data
3.1. Forecast Model
3.2. Experimental Setup
3.3. Data Used
3.4. Assimilation Methodology
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, T.; Srivastava, P.K.; Rico-Ramirez, M.A.; Dai, Q.; Gupta, M.; Singh, S.K. Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Nat. Hazards 2014, 76, 1473–1495. [Google Scholar] [CrossRef]
- Rajeswari, J.R.; Srinivas, C.V.; Mohan, P.R.; Venkatraman, B. Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model. Pure Appl. Geophys. 2020, 177, 5523–5550. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather. Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Sansom, H. Tropical climatology—An introduction to the climates of the low latitudes. Earth-Sci. Rev. 1977, 13, 377–378. [Google Scholar] [CrossRef]
- Yesubabu, V.; Srinivas, C.V.; Hariprasad, K.B.R.R.; Baskaran, R. A Study on the Impact of Observation Assimilation on the Numerical Simulation of Tropical Cyclones JAL and THANE Using 3DVAR. Pure Appl. Geophys. 2013, 171, 2023–2042. [Google Scholar] [CrossRef]
- Thodsan, T.; Wu, F.; Torsri, K.; Yang, G. Evaluation of 3DVAR Data Assimilation with Automatic Weather Station Data for Heavy Rainfall Forecasting in Thailand. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7263–7266. [Google Scholar]
- Kattamanchi, V.; Viswanadhapalli, Y.; Dasari, H.P.; Langodan, S.; Vissa, N.K.; Sanikommu, S.; Rao, S.V. Impact of assimilation of SCATSAT-1 data on coupled ocean-atmospheric simulations of tropical cyclones over Bay of Bengal. Atmos. Res. 2021, 261, 105733. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Huang, X.; Min, J.; Wang, H. Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys. 2013, 122, 1–18. [Google Scholar] [CrossRef]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst. 2016, 8, 1014–1028. [Google Scholar] [CrossRef]
- Moradi, I.; Evans, K.F.; McCarty, W.; Cordero-Fuentes, M.; Gelaro, R.; Black, R.A. Assimilation of Satellite Microwave Observations over the Rainbands of Tropical Cyclones. Mon. Weather. Rev. 2020, 148, 4729–4745. [Google Scholar] [CrossRef]
- Deb, S.; Kishtawal, C.; Kumar, P.; Kumar, A.K.; Pal, P.; Kaushik, N.; Sangar, G. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK. Atmos. Res. 2015, 169, 1–16. [Google Scholar] [CrossRef]
- Singh, K.S.; Mandal, M.; Bhaskaran, P.K. Impact of radiance data assimilation on the prediction performance of cyclonic storm SIDR using WRF-3DVAR modelling system. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2017, 131, 11–28. [Google Scholar] [CrossRef]
- Lindskog, M.; Dybbroe, A.; Randriamampianina, R. Use of Microwave Radiances from Metop-C and Fengyun-3 C/D Satellites for a Northern European Limited-area Data Assimilation System. Adv. Atmos. Sci. 2021, 38, 1415–1428. [Google Scholar] [CrossRef]
- Xu, D.; Shu, A.; Li, H.; Shen, F.; Li, Q.; Su, H. Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil. Remote Sens. 2021, 13, 2873. [Google Scholar] [CrossRef]
- Thodsan, T.; Wu, F.; Torsri, K.; Khampuenson, T.; Yang, G. Impact of the Assimilation of Multi-Platform Observations on Heavy Rainfall Forecasts in Kong-Chi Basin, Thailand. Atmosphere 2021, 12, 1497. [Google Scholar] [CrossRef]
- Eyre, J.R.; Bell, W.; Cotton, J.; English, S.J.; Forsythe, M.; Healy, S.B.; Pavelin, E.G. Assimilation of satellite data in numerical weather prediction. Part II: Recent years. Q. J. R. Meteorol. Soc. 2021, 148, 521–556. [Google Scholar] [CrossRef]
- Eyre, J.R.; English, S.J.; Forsythe, M. Assimilation of satellite data in numerical weather prediction. Part I: The early years. Q. J. R. Meteorol. Soc. 2019, 146, 49–68. [Google Scholar] [CrossRef]
- Tian, X.; Zou, X. Capturing Size and Intensity Changes of Hurricanes Irma and Maria (2017) from Polar-Orbiting Satellite Microwave Radiometers. J. Atmos. Sci. 2018, 75, 2509–2522. [Google Scholar] [CrossRef]
- Seto, R.; Koike, T.; Rasmy, M. Heavy rainfall prediction applying satellite-based cloud data assimilation over land. J. Geophys. Res. Atmos. 2016, 121, 9737–9755. [Google Scholar] [CrossRef]
- Phunthirawuthi, P.; Wu, F.; Boonyuen, P. Performance analysis of GPS Radio Occultation assimilation for tropical cyclone monitoring. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2181–2184. [Google Scholar]
- Chandrasekar, R.; Balaji, C. Impact of physics parameterization and 3DVAR data assimilation on prediction of tropical cyclones in the Bay of Bengal region. Nat. Hazards 2015, 80, 223–247. [Google Scholar] [CrossRef]
- Chandrasekar, R.; Sahu, R.K.; Balaji, C. Assimilation of multi-channel radiances in mesoscale models with an ensemble technique to improve track forecasts of Tropical cyclones. J. Earth Syst. Sci. 2022, 131, 83. [Google Scholar] [CrossRef]
- Sentinel Asia. Tropical Storm Dianmu Flood in Thailand on 1 October 2021. Available online: https://sentinel-asia.org/EO/2021/article20211001TH.html (accessed on 1 February 2022).
- Rogers, E.; Black, T.L.; Deaven, D.G.; Dimego, G.J.; Zhao, Q.; Baldwin, M.E.; Junker, N.W.; Lin, Y. Changes to the Operational “Early” Eta Analysis/Forecast System at the National Centers for Environmental Prediction. Weather Forecast. 1996, 11, 391–413. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Torcing by long-lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113, D13. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Janjic, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Kim, E.J.; Leslie, V.; Lyu, J.; Smith, C.K.; McCormick, L.; Anderson, K. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1). In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Kim, E.J.; Leslie, R.V.; Lyu, C.-H.J.; Smith, C.K.; Osaretin, I.; Abraham, S.; Sammons, M.; Anderson, K.; Amato, J.; Fuentes, J.; et al. Pre-Launch Performance of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-2 Satellite (JPSS-2). In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October; pp. 6353–6356.
- You, Q.; Min, J.; Kang, S.; Pepin, N. Poleward expansion of the tropical belt derived from upper tropospheric water vapour. Int. J. Clim. 2014, 35, 2237–2242. [Google Scholar] [CrossRef]
- ESA. HIRS/4 Performance. Available online: https://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/MetOp/About_HIRS_4 (accessed on 3 February 2022).
- Cao, C.; Xu, H.; Sullivan, J.; McMillin, L.M.; Ciren, P.; Hou, Y.-T. Intersatellite Radiance Biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations. J. Atmos. Ocean. Technol. 2005, 22, 381–395. [Google Scholar] [CrossRef]
- Baker, N.L.; Hogan, T.F.; Campbell, W.F.; Pauley, R.L.; Swadley, S.D. The Impact of AMSU-A Radiance Assimilation in the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS); Atmospheric Dynamics and Prediction Branch, Marine Meteorology Division: Monterey, CA, USA, 2005. [Google Scholar]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Poterjoy, J.; Zhang, F. Intercomparison and Coupling of Ensemble and Four-Dimensional Variational Data Assimilation Methods for the Analysis and Forecasting of Hurricane Karl (2010). Mon. Weather Rev. 2014, 142, 3347–3364. [Google Scholar] [CrossRef]
- Greeshma, M.M.; Srinivas, C.V.; Yesubabu, V.; Naidu, C.V.; Baskaran, R.; Venkatraman, B. Impact of local data assimilation on tropical cyclone predictions over the Bay of Bengal using the ARW model. Ann. Geophys. 2015, 33, 805–828. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.-Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.C. Unified Notation for Data Assimilation: Operational, Sequential and Variational. J. Meteorol. Soc. Jpn. 1997, 75, 181–189. [Google Scholar] [CrossRef]
- Tarantola, A.; Valette, B. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion. Rev. Geophys. 1982, 20, 219–232. [Google Scholar] [CrossRef]
- Sugimoto, S.; Crook, N.A.; Sun, J.; Xiao, Q.; Barker, D.M. An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation through Observing System Simulation Experiments. Mon. Weather. Rev. 2009, 137, 4011–4029. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Han, Y.; Weng, F.; Liu, Q.; Van Delst, P. A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res. Earth Surf. 2007, 112, D11. [Google Scholar] [CrossRef]
- Weng, F. Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation. J. Atmos. Sci. 2007, 64, 3799–3807. [Google Scholar] [CrossRef]
- Scheck, L.; Frèrebeau, P.; Buras-Schnell, R.; Mayer, B. A fast radiative transfer method for the simulation of visible satellite imagery. J. Quant. Spectrosc. Radiat. Transf. 2016, 175, 54–67. [Google Scholar] [CrossRef]
- Eriksson, P.; Ekelund, R.; Mendrok, J.; Brath, M.; Lemke, O.; Buehler, S.A. A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths. Earth Syst. Sci. Data 2018, 10, 1301–1326. [Google Scholar] [CrossRef]
- Geer, A.J. Physical characteristics of frozen hydrometeors inferred with parameter estimation. Atmospheric Meas. Atmos. Meas. Tech. 2021, 14, 5369–5395. [Google Scholar] [CrossRef]
- Weng, F.; Johnson, B.T.; Zhang, P.; English, S. Preface for the special issue of radiative transfer models for satellite data assimilation. J. Quant. Spectrosc. Radiat. Transf. 2020, 244, 106826. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Y.; Li, C. Sensor-based clear and cloud radiance calculations in the community radiative transfer model. Appl. Opt. 2013, 52, 4981–4990. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Weng, F. Using Advanced Matrix Operator (AMOM) in Community Radiative Transfer Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1211–1218. [Google Scholar] [CrossRef]
- Wu, W.-S.; Purser, R.J.; Parrish, D.F. Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances. Mon. Weather Rev. 2002, 130, 2905–2916. [Google Scholar] [CrossRef]
- Purser, R.J.; Wu, W.; Parrish, D.F.; Roberts, N.M. Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances. Mon. Weather Rev. 2003, 131, 1524–1535. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.-Y.; Sun, J.; Xu, D.; Zhang, M.; Fan, S.; Zhong, J. Inhomogeneous Background Error Modeling for WRF-Var Using the NMC Method. J. Appl. Meteorol. Clim. 2014, 53, 2287–2309. [Google Scholar] [CrossRef]
Observation | Platform | Assimilation Parameters |
---|---|---|
Upper air | PILOT, SOUND | |
Land surface | SYNOP, METAR | |
Marine surface | SHIP | |
Satellite | GEOAMV, QuikSCAT |
Name of the Experimental Setup | Data Used in the Assimilation |
---|---|
CNTL | Mentioned in Table 1 |
RDA1 | CNTL + AMSU-A+ATMS |
RDA2 | CNTL + HIRS-4 |
ALL-OBS | CNTL + AMSU-A+ATMS+HIRS-4 |
Channel Number | AMSU-A Frequency (GHz) | ATMS Frequency (GHz) | HIRS-4 Frequency (GHz) |
---|---|---|---|
1 | 23.80 | 23.80 | 669 |
2 | 31.80 | 31.40 | 680 |
3 | 50.30 | 50.3 | 690 |
4 | 52.80 | 51.76 | 703 |
5 | 53.596 ± 0.115 | 52.8 | 716 |
6 | 54.40 | 53.596 ± 0.115 | 733 |
7 | 54.94 | 54.40 | 749 |
8 | 54.94 | 54.94 | 900 |
9 | 57.290 | 54.94 | 1030 |
10 | 57.290 | 57.290 | 802 |
11 | 57.290 ± 0.3222 ± 0.048 | 57.290 | 1365 |
12 | 57.290 ± 0.3222 ± 0.022 | 57.290 ± 0.3222 ± 0.048 | 1533 |
13 | 57.290 ± 0.3222 ± 0.010 | 57.290 ± 0.3222 ± 0.022 | 2188 |
14 | 57.290 ± 0.3222 ± 0.0045 | 57.290 ± 0.3222 ± 0.010 | 2210 |
15 | 89.0 | 57.290 ± 0.3222 ± 0.0045 | 2235 |
16 | 88.2 | ||
17 | 165.6 | ||
18 | 183.31 ± 7.0 | ||
19 | 183.31 ± 4.5 | ||
20 | 183.31 ± 3.0 | ||
21 | 183.31 ± 1.8 | ||
22 | 183.31 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thodsan, T.; Wu, F.; Torsri, K.; Cuestas, E.M.A.; Yang, G. Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts. Atmosphere 2022, 13, 956. https://doi.org/10.3390/atmos13060956
Thodsan T, Wu F, Torsri K, Cuestas EMA, Yang G. Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts. Atmosphere. 2022; 13(6):956. https://doi.org/10.3390/atmos13060956
Chicago/Turabian StyleThodsan, Thippawan, Falin Wu, Kritanai Torsri, Efren Martin Alban Cuestas, and Gongliu Yang. 2022. "Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts" Atmosphere 13, no. 6: 956. https://doi.org/10.3390/atmos13060956
APA StyleThodsan, T., Wu, F., Torsri, K., Cuestas, E. M. A., & Yang, G. (2022). Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts. Atmosphere, 13(6), 956. https://doi.org/10.3390/atmos13060956