Tropopause Characteristics Based on Long-Term ARM Radiosonde Data: A Fine-Scale Comparison at the Extratropical SGP Site and Arctic NSA Site
Abstract
:1. Introduction
2. Sites, Data and Methods
2.1. Sites and Data
2.2. Methods
3. Results
3.1. Climatology of the Tropopause Structure on Various Temporal Scales
3.2. Fitting-Derived Tropopause Features
3.3. Variation Trend of the Tropopause Height
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zängl, G.; Hoinka, K.P. The tropopause in the polar regions. J. Clim. 2001, 14, 3117–3139. [Google Scholar] [CrossRef]
- Seidel, D.J.; Randel, W.J. Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res. 2006, 111, D21101. [Google Scholar] [CrossRef]
- Shepherd, T.G. Issues in stratosphere-troposphere coupling. J. Meteorol. Soc. Jpn. 2002, 80, 769–792. [Google Scholar] [CrossRef] [Green Version]
- Santer, B.D.; Wehner, M.F.; Wigley, T.M.L.; Sausen, R.; Meehl, G.A.; Taylor, K.E.; Ammann, C.; Arblaster, J.; Washington, W.M.; Boyle, J.S.; et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 2003, 301, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Wu, F.; Forster, P. The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci. 2007, 64, 4489–4496. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Meteorology—A three-dimensional science. WMO Bull. 1957, 6, 134–138. [Google Scholar]
- Hoskins, B.J. Towards a PV-Theta view of the general-circulation. Tellus Ser. AB 1991, 43, 27–35. [Google Scholar]
- Hoerling, M.P.; Schaack, T.K.; Lenzen, A.J. Global objective tropopause analysis. Mon. Weather Rev. 1991, 119, 1816–1831. [Google Scholar] [CrossRef] [Green Version]
- Bethan, S.; Vaughan, G.; Reid, S.J. A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Q. J. R. Meteorol. Soc. 1996, 122, 929–944. [Google Scholar] [CrossRef]
- Pan, L.L.; Randel, W.J.; Gary, B.L.; Mahoney, M.J.; Hintsa, E.J. Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res. 2004, 109, D23103. [Google Scholar] [CrossRef]
- Birner, T.; Dornbrack, A.; Schumann, U. How sharp is the tropopause at midlatitudes? Geophys. Res. Lett. 2002, 29, 1700. [Google Scholar] [CrossRef] [Green Version]
- Birner, T. Fine-scale structure of the extratropical tropopause region. J. Geophys. Res. 2006, 111, D04104. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.W.; Geller, M.A. Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models. J. Geophys. Res. 2008, 113, D05109. [Google Scholar] [CrossRef] [Green Version]
- Birner, T.; Sankey, D.; Shepherd, T.G. The tropopause inversion layer in models and analyses. Geophys. Res. Lett. 2006, 33, L14804. [Google Scholar] [CrossRef] [Green Version]
- Hegglin, M.I.; Gettelman, A.; Hoor, P.; Krichevsky, R.; Manney, G.L.; Pan, L.L.; Son, S.W.; Stiller, G.; Tilmes, S.; Walker, K.A.; et al. Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. J. Geophys. Res. 2010, 115, D00M09. [Google Scholar] [CrossRef] [Green Version]
- Hegglin, M.I.; Boone, C.D.; Manney, G.L.; Walker, K.A. A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO. J. Geophys. Res. 2009, 114, D00B11. [Google Scholar] [CrossRef] [Green Version]
- Grise, K.M.; Thompson, D.W.J.; Birner, T. A global survey of static stability in the stratosphere and upper troposphere. J. Clim. 2010, 23, 2275–2292. [Google Scholar] [CrossRef]
- Wirth, V. Static stability in the extratropical tropopause region. J. Atmos. Sci. 2003, 60, 1395–1409. [Google Scholar] [CrossRef]
- Wirth, V.; Szabo, T. Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett. 2007, 34, L02809. [Google Scholar] [CrossRef]
- Son, S.W.; Polvani, L.M. Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett. 2007, 34, L17806. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Wu, F. The polar summer tropopause inversion layer. J. Atmos. Sci. 2010, 67, 2572–2581. [Google Scholar] [CrossRef]
- Kunz, A.; Konopka, P.; Mueller, R.; Pan, L.; Schiller, C.; Rohrer, F. High static stability in the mixing layer above the extratropical tropopause. J. Geophys. Res. 2009, 114, D16305. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Sato, K.; Watanabe, S.; Tomikawa, Y.; Kawatani, Y.; Takahashi, M. Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics. J. Atmos. Sci. 2010, 67, 1315–1336. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.J.; Hegglin, M.I.; Birner, T. The extratropical upper troposphere and lower stratosphere. Rev. Geophys. 2011, 49, RG3003. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.; Cammas, J.P.; Smit, H.G.J.; Heise, S.; Wickert, J.; Haser, A. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data. J. Geophys. Res. 2010, 115, D24304. [Google Scholar] [CrossRef] [Green Version]
- Homeyer, C.R.; Bowman, K.P.; Pan, L.L. Extratropical tropopause transition layer characteristics from high-resolution sounding data. J. Geophys. Res. 2010, 115, D13108. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Chen, H. Statistics of the tropopause inversion layer over Beijing. Adv. Atmos. Sci. 2008, 25, 381–386. [Google Scholar] [CrossRef]
- Bai, Z.; Bian, J.; Chen, H. Variation in the tropopause transition layer over China through analyzing high vertical resolution radiosonde data. Atmos. Ocean. Sci. Lett. 2017, 10, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Cloud-top temperature inversion derived from long-term radiosonde measurements at the ARM TWP and NSA sites. Atmos. Res. 2020, 246, 1051. [Google Scholar] [CrossRef]
- Dong, X.; Xi, B.; Crosby, K.; Long, C.N.; Stone, R.S.; Shupe, M.D. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res. 2010, 115, D17212. [Google Scholar] [CrossRef]
- Niu, X.; Pinker, R.T. Radiative fluxes at Barrow, Alaska: A satellite view. J. Clim. 2011, 24, 5494–5505. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Bian, J.; Bai, Z. Deep stratospheric intrusion and Russian wildfire induce enhanced tropospheric ozone pollution over the northern Tibetan Plateau. Atmos. Res. 2021, 259, 105662. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Dessler, A.E.; Dunkerton, T.J.; Folkins, I.; Fu, Q.; Mote, P.W. Tropical tropopause layer. Rev. Geophys. 2009, 47, RG1004. [Google Scholar] [CrossRef]
- Sausen, R.; Santer, B.D. Use of changes in tropopause height to detect human influences on climate. Meteorol. Z. 2003, 12, 131–136. [Google Scholar] [CrossRef]
- Santer, B.D.; Sausen, R.; Wigley, T.M.L.; Boyle, J.S.; AchutaRao, K.; Doutriaux, C.; Hansen, J.E.; Meehl, G.A.; Roeckner, E.; Ruedy, R.; et al. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res. 2003, 108, 4002. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; Vavrus, S.J.; Cohen, J. Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. WIREs Clim. Change 2017, 8, e474. [Google Scholar] [CrossRef]
- Comiso, C.; Parkinson, L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef] [Green Version]
- Pearce, F. Meltdown: The Arctic armageddon. New Sci. 2009, 201, 32–36. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J. Tropopause Characteristics Based on Long-Term ARM Radiosonde Data: A Fine-Scale Comparison at the Extratropical SGP Site and Arctic NSA Site. Atmosphere 2022, 13, 965. https://doi.org/10.3390/atmos13060965
Zhang J. Tropopause Characteristics Based on Long-Term ARM Radiosonde Data: A Fine-Scale Comparison at the Extratropical SGP Site and Arctic NSA Site. Atmosphere. 2022; 13(6):965. https://doi.org/10.3390/atmos13060965
Chicago/Turabian StyleZhang, Jinqiang. 2022. "Tropopause Characteristics Based on Long-Term ARM Radiosonde Data: A Fine-Scale Comparison at the Extratropical SGP Site and Arctic NSA Site" Atmosphere 13, no. 6: 965. https://doi.org/10.3390/atmos13060965
APA StyleZhang, J. (2022). Tropopause Characteristics Based on Long-Term ARM Radiosonde Data: A Fine-Scale Comparison at the Extratropical SGP Site and Arctic NSA Site. Atmosphere, 13(6), 965. https://doi.org/10.3390/atmos13060965