Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System
Abstract
:1. Introduction
2. Numerical Aspects and Experimental Designs
2.1. The Numerical Model and Data Assimilation System
2.2. RO Operators
2.3. The DVI Method
2.4. Settings of the Model Experiments
3. Simulations and Discussion
3.1. The RO Data Used in the Assimilation
3.2. Initial Analyses after Data Assimilation
3.3. Forecasted Results with DVI
3.4. Higher-Resolution Forecast Results with the DVI
3.5. PV Budget Analysis
3.6. Impact on Forecast of Typhoon Mitag (2019)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.D.; Park, S.-H.; Ringler, T.D. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Weather Rev. 2012, 140, 3090–3105. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Zhang, Y.; Skamarock, W.C.; Hsu, L.-H. Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Month. Weather Rev. 2017, 145, 1691–1716. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Huang, C.-H.; Skamarock, W.C. Track deflection of typhoon Nesat (2017) as realized by multiresolution simulations of a global model. Month. Weather Rev. 2019, 147, 1593–1613. [Google Scholar] [CrossRef]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.-S.; Lord, S. Introduction of the GSI into the NCEP global data assimilation system. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef]
- Shao, H.; Derber, J.; Huang, X.-Y.; Hu, M.; Newman, K.; Stark, D.; Lueken, M.; Zhou, C.; Nance, L.; Kuo, Y.-H. Bridging research to operations transitions: Status and plans of community GSI. Bull. Am. Meteorol. Soc. 2016, 97, 1427–1440. [Google Scholar] [CrossRef]
- Hamill, T.M.; Snyder, C. A hybrid ensemble Kalman filter–3D variational analysis scheme. Month. Weather Rev. 2000, 128, 2905–2919. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Liu, Z.; Huang, X.-Y. Sensitivity of limited-area hybrid variational-ensemble analyses and forecasts to ensemble perturbation resolution. Month. Weather Rev. 2015, 143, 3454–3477. [Google Scholar] [CrossRef]
- Kurihara, Y.; Bender, M.A.; Ross, R.J. An initialization scheme of hurricane models by vortex specification. Month. Weather Rev. 1993, 121, 2030–2045. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Chen, Y.-L. High-resolution initialization and simulations of Typhoon Morakot (2009). Month. Weather Rev. 2011, 139, 1463–1491. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Chen, Y.-L. Improvements to a tropical cyclone initialization scheme and impacts on forecasts. Month. Weather Rev. 2014, 142, 4340–4356. [Google Scholar] [CrossRef]
- Cha, D.-H.; Wang, Y. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Month. Weather Rev. 2013, 141, 964–986. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, Y.; Xu, J.; Duan, Y. A dynamical initialization scheme for tropical cyclones under the influence of terrain. Weather Forecast. 2018, 33, 641–659. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lin, J.-Y.; Skamarock, W.C.; Chen, S.-Y. Typhoon forecasts with dynamic vortex initialization using an unstructured mesh global model. Month. Weather Rev. 2022, in press. [Google Scholar] [CrossRef]
- Kursinski, E.; Hajj, G.; Schofield, J.; Linfield, R.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Wee, T.-K.; Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R. Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 507–531. [Google Scholar] [CrossRef]
- Chu, C.-H.; Huang, C.-Y.; Fong, C.-J.; Chen, S.-Y.; Chen, Y.-H.; Yeh, W.-H.; Kuo, Y.-H. Atmospheric remote sensing using global navigation satellite systems: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Terr. Atmos. Ocean. Sci. 2021, 32, 1001–1013. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Weiss, J.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.H.; Meehan, T.; Serafino, W. COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Ho, S.-P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Huang, C.-Y.; Kuo, Y.-H.; Guo, Y.-R.; Sokolovskiy, S. Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Ocean. Sci. 2009, 20, 133–154. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsieh, M.-E.; Hsiao, L.-F.; Kuo, Y.-H.; Yang, M.-J.; Huang, C.-Y.; Lee, C.-S. Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010. Atmos. Meas. Tech. 2015, 8, 2531–2542. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Zhao, H.; Huang, C.-Y. Impacts of GNSS radio occultation data on predictions of two super-intense typhoons with WRF hybrid variational-ensemble data assimilation. J. Aeronaut. Astronaut. Aviat 2018, 50, 347–364. [Google Scholar]
- Chen, S.-Y.; Shih, C.-P.; Huang, C.-Y.; Teng, W.-H. An Impact Study of GNSS RO Data on the Prediction of Typhoon Nepartak (2016) Using a Multiresolution Global Model with 3D-Hybrid Data Assimilation. Weather Forecast. 2021, 36, 957–977. [Google Scholar]
- Chen, S.-Y.; Nguyen, T.-C.; Huang, C.-Y. Impact of Radio Occultation Data on the Prediction of Typhoon Haishen (2020) with WRFDA Hybrid Assimilation. Atmosphere 2021, 12, 1397. [Google Scholar] [CrossRef]
- Chen, X.M.; Chen, S.-H.; Haase, J.S.; Murphy, B.J.; Wang, K.-N.; Garrison, J.L.; Chen, S.-Y.; Huang, C.-Y.; Adhikari, L.; Xie, F. The impact of airborne radio occultation observations on the simulation of Hurricane Karl (2010). Month. Weather Rev. 2018, 146, 329–350. [Google Scholar] [CrossRef]
- Cucurull, L. Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Weather Forecast. 2010, 25, 749–767. [Google Scholar] [CrossRef]
- Cucurull, L.; Derber, J.; Purser, R. A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos. 2013, 118, 14–28. [Google Scholar] [CrossRef]
- Cucurull, L.; Derber, J.; Treadon, R.; Purser, R. Assimilation of global positioning system radio occultation observations into NCEP’s global data assimilation system. Month. Weather Rev. 2007, 135, 3174–3193. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Kuo, Y.-H.; Chen, S.-H.; Vandenberghe, F. Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Weather Forecast. 2005, 20, 931–953. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Kuo, Y.-H.; Chen, S.-Y.; Terng, C.-T.; Chien, F.-C.; Lin, P.-L.; Kueh, M.-T.; Chen, S.-H.; Yang, M.-J.; Wang, C.-J. Impact of GPS radio occultation data assimilation on regional weather predictions. GPS Solut. 2010, 14, 35–49. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, S.-Y.; Rao Anisetty, S.P.; Yang, S.-C.; Hsiao, L.-F. An impact study of GPS radio occultation observations on frontal rainfall prediction with a local bending angle operator. Weather Forecast. 2016, 31, 129–150. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chen, S.-H.; Chen, S.-Y.; Huang, C.-Y.; Chen, C.-S. Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Month. Weather Rev. 2014, 142, 4139–4163. [Google Scholar] [CrossRef]
- Ha, S.; Snyder, C.; Skamarock, W.C.; Anderson, J.; Collins, N. Ensemble Kalman filter data assimilation for the Model for Prediction Across Scales (MPAS). Month. Weather Rev. 2017, 145, 4673–4692. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Month. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Bannister, R. A review of operational methods of variational and ensemble-variational data assimilation. Q. J. R. Meteorol. Soc. 2017, 143, 607–633. [Google Scholar] [CrossRef]
- Wang, X. Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Month. Weather Rev. 2010, 138, 2990–2995. [Google Scholar] [CrossRef]
- Wang, X.; Parrish, D.; Kleist, D.; Whitaker, J. GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Month. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M. Ensemble data assimilation without perturbed observations. Month. Weather Rev. 2002, 130, 1913–1924. [Google Scholar] [CrossRef]
- Smith, E.K.; Weintraub, S. The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 6th ed.; Pergamon: Oxford, UK, 1980; p. 808. [Google Scholar]
- Barker, D. Southern high-latitude ensemble data assimilation in the Antarctic Mesoscale Prediction System. Month. Weather Rev. 2005, 133, 3431–3449. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.-Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Hamill, T.M.; Whitaker, J.S.; Kleist, D.T.; Fiorino, M.; Benjamin, S.G. Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Month. Weather Rev. 2011, 139, 3243–3247. [Google Scholar] [CrossRef]
- Kleist, D.T. An Evaluation of Hybrid Variational-Ensemble Data Assimilation for the NCEP GFS; University of Maryland: College Park, Maryland, 2012. [Google Scholar]
- Feng, J.; Wang, X. Impact of increasing horizontal and vertical resolution during the HWRF hybrid EnVar data assimilation on the analysis and prediction of Hurricane Patricia (2015). Month. Weather Rev. 2021, 149, 419–441. [Google Scholar] [CrossRef]
- Lien, G.-Y.; Lin, C.-H.; Huang, Z.-M.; Teng, W.-H.; Chen, J.-H.; Lin, C.-C.; Ho, H.-H.; Huang, J.-Y.; Hong, J.-S.; Cheng, C.-P. Assimilation impact of early FORMOSAT-7/COSMIC-2 GNSS radio occultation data with Taiwan’s CWB Global Forecast System. Month. Weather Rev. 2021, 149, 2171–2191. [Google Scholar] [CrossRef]
- Berrisford, P.; Kallberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.; Poli, P.; Sato, H. Coauthors, 2011: The ERA-interim archive version 2.0. ERA Rep. Ser. 2019, 1, 23. [Google Scholar]
CASE | Observation | DVI | Resolution (km) |
---|---|---|---|
NoDA GTS REF BND | X RS+OA RS+OA+RO RS+OA+RO | X X X X | 60-15 60-15 60-15 60-15 |
GTS_RP GTS_RV REF_RP REF_RV BND_RP BND_RV | RS+OA RS+OA RS+OA+RO RS+OA+RO RS+OA+RO RS+OA+RO | P-match V-match P-match V-match P-match V-match | 60-15 60-15 60-15 60-15 60-15 60-15 |
BND_H BND_RPH BND_RVH | RS+OA+RO RS+OA+RO RS+OA+RO | X P-match V-match | 60-15-3 60-15-3 60-15-3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, T.-Y.; Chen, S.-Y.; Huang, C.-Y.; Shih, C.-P.; Schwartz, C.S.; Liu, Z.; Bresch, J.; Lin, J.-Y. Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System. Atmosphere 2022, 13, 1353. https://doi.org/10.3390/atmos13091353
Chien T-Y, Chen S-Y, Huang C-Y, Shih C-P, Schwartz CS, Liu Z, Bresch J, Lin J-Y. Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System. Atmosphere. 2022; 13(9):1353. https://doi.org/10.3390/atmos13091353
Chicago/Turabian StyleChien, Tzu-Yu, Shu-Ya Chen, Ching-Yuang Huang, Cheng-Peng Shih, Craig S. Schwartz, Zhiquan Liu, Jamie Bresch, and Jia-Yang Lin. 2022. "Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System" Atmosphere 13, no. 9: 1353. https://doi.org/10.3390/atmos13091353
APA StyleChien, T. -Y., Chen, S. -Y., Huang, C. -Y., Shih, C. -P., Schwartz, C. S., Liu, Z., Bresch, J., & Lin, J. -Y. (2022). Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System. Atmosphere, 13(9), 1353. https://doi.org/10.3390/atmos13091353