Atmospheric Effects of Magnetosheath Jets
Abstract
:1. Introduction
2. Magnetosheath Jets
3. Effects in the High-Latitude Atmosphere
4. Discussion
5. Conclusions
- -
- Prominent magnetic variations with amplitudes up to 100 nT visible in the geomagnetic Dst and AE indices as well as at networks ground-based magnetic magnetometers on the dayside;
- -
- Magnetospheric forcing in the form of intense precipitations of the suprathermal ions of more than 4 erg/(cm2 s) and energetic electrons with fluxes above 104 (cm2 s sr)−1;
- -
- Enhancements of ionization with an amplitude of ~1 TECU (~30%) and intensification of the ionospheric E and F1 regions that might affect radio communication and navigation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Němeček, Z.; Šafránková, J.; Prech, L.; Sibeck, D.G.; Kokubun, S.; Mukai, T. Transient flux enhancements in the magnetosheath. Geophys. Res. Lett. 1998, 25, 1273–1276. [Google Scholar] [CrossRef]
- Plaschke, F.; Hietala, H.; Archer, M.; Blanco-Cano, X.; Kajdičet, P.; Karlsson, T.; Lee, S.-H.; Omidi, N.; Palmroth, M.; Roytershteyn, V.; et al. Jets downstream of collisioness shocks. Space Sci. Rev. 2018, 214, 81. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, A.V.; Suvorova, A.V. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations. J. Geophys. Res. 2012, 117, A08217. [Google Scholar] [CrossRef] [Green Version]
- Shue, J.-H.; Chao, J.-K.; Song, P.; McFadden, J.P.; Suvorova, A.; Angelopoulos, V.; Glassmeier, K.H.; Plaschke, F. Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields. Geophys. Res. Lett. 2009, 36, L18112. [Google Scholar] [CrossRef] [Green Version]
- Archer, M.O.; Hietala, H.; Hartinger, M.D.; Plaschke, F.; Angelopoulos, V. Direct observations of a surface eigenmode of the dayside magnetopause. Nat. Commun. 2019, 10, 615. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, A.V.; Suvorova, A.V. Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations. J. Geophys. Res. Space Phys. 2015, 120, 4423–4437. [Google Scholar] [CrossRef] [Green Version]
- Fairfield, D.H.; Baumjohann, W.; Paschmann, G.; Sibeck, D.G. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere. J. Geophys. Res. 1990, 95, 3773–3786. [Google Scholar] [CrossRef]
- Lin, Y.; Lee, L.C.; Yan, M. Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation. J. Geophys. Res. 1996, 101, 479–493. [Google Scholar] [CrossRef]
- Archer, M.O.; Horbury, T.S.; Eastwood, J.P. Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities. J. Geophys. Res. Space Phys. 2012, 117, A05228. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Lalchand, B.; Ghosh, S. Mechanisms and Evolution of Geoeffective Large-Scale Plasma Jets in the Magnetosheath. Universe 2021, 7, 152. [Google Scholar] [CrossRef]
- Schwartz, S.J.; Burgess, D. Quasi-parallel shocks: A patchwork of three-dimensional structures. Geophys. Res. Lett. 1991, 18, 373–376. [Google Scholar] [CrossRef]
- Suvorova, A.V.; Shue, J.-H.; Dmitriev, A.V.; Sibeck, D.G.; McFadden, J.P.; Hasegawa, H.; Ackerson, K.; Jelínek, K.; Šafránková, J.; Němeček, Z. Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations. J. Geophys. Res. 2010, 115, A10216. [Google Scholar] [CrossRef] [Green Version]
- Archer, M.O.; Horbury, T.S. Magnetosheath dynamic pressure enhancements: Occurrence and typical properties. Ann. Geophys. 2013, 31, 319–331. [Google Scholar] [CrossRef]
- Plaschke, F.; Hietala, H.; Angelopoulos, V.; Nakamura, R. Geoeffective jets impacting the magnetopause are very common. J. Geophys. Res. Space Phys. 2016, 121, 3240–3253. [Google Scholar] [CrossRef]
- Archer, M.O.; Horbury, T.S.; Eastwood, J.P.; Weygand, J.M.; Yeoman, T.K. Magnetospheric response to magnetosheath pressure pulses: A low-pass filter effect. J. Geophys. Res. Space Phys. 2013, 118, 5454–5466. [Google Scholar] [CrossRef] [Green Version]
- Sibeck, D.G.; Korotova, G.I. Occurrence patterns for transient magnetic field signatures at high latitudes. J. Geophys. Res. 1996, 101, 13413–13428. [Google Scholar] [CrossRef]
- Vorobjev, V.G.; Yagodkina, O.I.; Sibeck, D.G.; Liou, K.; Meng, C.-I. Polar UVI observations of dayside auroral transient events. J. Geophys. Res. 2001, 106, 28897–28911. [Google Scholar] [CrossRef] [Green Version]
- Hietala, H.; Partamies, N.; Laitinen, T.V.; Clausen, L.B.N.; Facskó, G.; Vaivads, A.; Koskinen, H.E.J.; Dandouras, I.; Rème, H.; Lucek, E.A. Supersonic subsolar magnetosheath jets and their effect: From the solar wind to the ionospheric convection. Ann. Geophys. 2012, 30, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Engebretson, M.J.; Yeoman, T.K.; Oksavik, K.; Søraas, F.; Sigernes, F.; Moen, J.I.; Johnsen, M.G.; Pilipenko, V.A.; Posch, J.L.; Lessard, M.R.; et al. Multi-instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. J. Geophys. Res. Space Phys. 2013, 118, 2975–2997. [Google Scholar] [CrossRef] [Green Version]
- Posch, J.L.; Engebretson, M.J.; Witte, A.J.; Murr, D.L.; Lessard, M.R.; Johnsen, M.G.; Singer, H.J.; Hartinger, M.D. Simultaneous traveling convection vortex events and Pc1 wave bursts at cusp latitudes observed in Arctic Canada and Svalbard. J. Geophys. Res. Space Phys. 2013, 118, 6352–6363. [Google Scholar] [CrossRef]
- Han, D.-S.; Liu, J.J.; Chen, X.C.; Xu, T.; Li, B.; Hu, Z.J.; Hu, H.Q.; Yang, H.G.; Fuselier, S.A.; Pollock, C.J. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations. J. Geophys. Res. Space Phys. 2018, 123, 2658–2667. [Google Scholar] [CrossRef]
- Suvorova, A.V.; Dmitriev, A.V.; Parkhomov, V.A.; Tsegmed, B. Quiet time structured Pc1 waves generated during transient foreshock. J. Geophys. Res. Space Phys. 2019, 124, 9075–9093. [Google Scholar] [CrossRef]
- Feng, H.-T.; Han, D.-S.; Chen, X.-C.; Liu, J.-J.; Xu, Z.-H. Interhemispheric conjugacy of concurrent onset and poleward traveling geomagnetic responses for throat aurora observed under quiet solar wind conditions. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027995. [Google Scholar] [CrossRef]
- Mishin, V.V. Accelerated Motions of the Magnetopause as a Trigger of the Kelvin-Helmholtz Instability. J. Geophys. Res. 1993, 98, 21365–21371. [Google Scholar] [CrossRef]
- Mishin, V.V.; Parkhomov, V.A.; Tabanakov, I.V.; Hayashi, K. About “inclusion” of flute instability at the magnetopause during passing of the interplanetary magnetic cloud on January, 10 and 11 1997. Geomagn. Aeron. 2001, 41, 165. (In Russian) [Google Scholar] [CrossRef]
- Sibeck, D.G. Plasma transfer processes at the magnetopause. Space Sci. Rev. 1999, 88, 207–283. [Google Scholar] [CrossRef]
- Zhang, H.; Zong, Q.; Connor, H.; Delamere, P.; Facsko, G.; Han, D.; Hasegawa, H.; Kallio, E.; Kis, A.; Le, G. Dayside transient phenomena and their impact on the magnetosphere and ionosphere. Space Sci. Rev. 2022, 218, 40. [Google Scholar] [CrossRef]
- Lemaire, J. Impulsive penetration of filamentary plasma elements into themagnetospheres of the Earth and Jupiter. Planet. Space Sci. 1977, 25, 887–890. [Google Scholar] [CrossRef]
- Brenning, N.; Hurtig, T.; Raadu, M. Conditions for plasmoid penetration across abrupt magnetic barriers. Phys. Plasmas 2005, 12, 012308. [Google Scholar] [CrossRef] [Green Version]
- Savin, S.; Amata, E.; Zelenyi, L.; Budaev, V.; Consolini, G.; Treumann, R.; Lucek, E.; Safrankova, J.; Nemecek, Z.; Khotyaintsev, Y.; et al. High kinetic energy jets in the Earth’s magnetosheath: Implications for plasma dynamics and anomalous transport. JETP Lett. 2008, 87, 593–599. [Google Scholar] [CrossRef]
- Suvorova, A.V.; Dmitriev, A.V.; Parkhomov, V.A. Energetic electron enhancements under the radiation belt (L < 1.2) during a non-storm interval on August 1, 2008. Ann. Geophys. 2019, 37, 1223–1241. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Nishimura, Y.; Heitala, H.; Lyons, L.; Angelopoulos, V.; Plaschke, F.; Ebihara, Y.; Weatherwax, A. Impacts of magnetosheath high-speed jets on the magnetosphere and ionosphere measured by optical imaging and satellite observations. J. Geophys. Res. Space Phys. 2018, 123, 4879–4894. [Google Scholar] [CrossRef]
- Han, D.-S.; Nishimura, Y.; Lyons, L.R.; Hu, H.Q.; Yang, H.G. Throat aurora: The ionospheric signature of magnetosheath particles penetrating into the magnetosphere. Geophys. Res. Lett. 2016, 43, 1819–1827. [Google Scholar] [CrossRef] [Green Version]
- Angelopoulos, V. The THEMIS Mission. Space Sci. Rev. 2008, 141, 5–34. [Google Scholar] [CrossRef]
- Lin, R.L.; Zhang, X.X.; Liu, S.Q.; Wang, Y.L.; Gong, J.C. A three-dimensional asymmetric magnetopause model. J. Geophys. Res. 2010, 115, A04207. [Google Scholar] [CrossRef]
- Burton, R.K.; McPherron, R.L.; Russell, C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, 80, 4204–4214. [Google Scholar] [CrossRef]
- Evans, D.S.; Greer, M.S. Polar Orbiting Environmental Satellite Space Environment Monitor: 2. Instrument Descriptions and Archive Data Documentation; Technical Report; Space Enviromant Center: Boulder, CO, USA, 2004.
- Gjerloev, J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, 117, A09213. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Huang, C.-M.; Brahmanandam, P.S.; Chang, L.C.; Chen, K.-T.; Tsai, L.-C. Longitudinal variations of positive dayside ionospheric storms related to recurrent geomagnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 6806–6822. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.-A.; Pavelyev, A.; Liu, S.-F.; Yen, N.; Huang, C.-Y.; Fong, C.-J. FORMOSAT-3/COSMIC GPS Radio Occultation Mission: Preliminary Results. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3813–3826. [Google Scholar] [CrossRef]
- Jakowski, N.; Angling, M.; Leitinger, R. Radio occultation techniques for probing the ionosphere. Ann. Geophys. 2004, 47, 1049–1066. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Rocken, C.; Kuo, Y.-H. Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements. Radio Sci. 2011, 46, RS1013. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Burns, A.G.; Wang, W.; Qian, L.; Pedatella, N.; Coster, A.; Zhang, S.; Solomon, S.C.; Eastes, R.W.; Daniell, R.E.; et al. Variations in thermosphere composition and ionosphere total electron content under “geomagnetically quiet” conditions at solar-minimum. Geophys. Res. Lett. 2021, 48, e2021GL093300. [Google Scholar] [CrossRef]
- Chi, P.J.; Lee, D.-H.; Russell, C.T. Tamao travel time of sudden impulses and its relationship to ionospheric convection vortices. J. Geophys. Res. 2006, 111, A08205. [Google Scholar] [CrossRef]
- Raptis, S.; Karlsson, T.; Vaivads, A.; Lindberg, M.; Johlander, A.; Trollvik, H. On magnetosheath jet kinetic structure and plasma properties. Geophys. Res. Lett. 2022, 49, e2022GL100678. [Google Scholar] [CrossRef]
- Norenius, L.; Hamrin, M.; Goncharov, O.; Gunell, H.; Opgenoorth, H.; Pitkanen, T.; Chong, S.; Partamies, N.; Baddeley, L. Groundbased magnetometer response to impacting magnetosheath jets. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029115. [Google Scholar] [CrossRef]
- Zhang, Y.; England, S.; Paxton, L.J. Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere. Geophys. Res. Lett. 2010, 37, L17103. [Google Scholar] [CrossRef]
- Chang, L.C.; Yue, J.; Wang, W.; Wu, Q.; Meier, R.R. Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere. J. Geophys. Res. Space Phys. 2014, 119, 4786–4804. [Google Scholar] [CrossRef]
- Vadas, S.L. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res. 2007, 112, A06305. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, 14, 917–940. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Jayachandran, P.T.; Tsai, L.-C. Elliptical model of cutoff boundaries for the solar energetic particles measured by POES satellites in December 2006. J. Geophys. Res. 2010, 115, A12244. [Google Scholar] [CrossRef] [Green Version]
- Imhof, W.L.; Voss, H.D.; Mobilia, J.; Datlowe, D.W.; Gaines, E.E. The precipitation of relativistic electrons near the trapping boundary. J. Geophys. Res. 1991, 96, 5619–5629. [Google Scholar] [CrossRef]
Station | Tmax, UT | Lat, deg | Lon, deg | mLat, deg | mLon, deg | LT |
---|---|---|---|---|---|---|
ANNA | 22:47:16 | 42.4 | 276.1 | 52.9 | 349.5 | 1710 |
WEYB | 22:45:47 | 49.7 | 256.2 | 58.6 | 320.9 | 1550 |
VULC | 22:45:00 | 50.4 | 247.0 | 57.0 | 308.8 | 1514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitriev, A.V.; Suvorova, A.V. Atmospheric Effects of Magnetosheath Jets. Atmosphere 2023, 14, 45. https://doi.org/10.3390/atmos14010045
Dmitriev AV, Suvorova AV. Atmospheric Effects of Magnetosheath Jets. Atmosphere. 2023; 14(1):45. https://doi.org/10.3390/atmos14010045
Chicago/Turabian StyleDmitriev, Alexei V., and Alla V. Suvorova. 2023. "Atmospheric Effects of Magnetosheath Jets" Atmosphere 14, no. 1: 45. https://doi.org/10.3390/atmos14010045
APA StyleDmitriev, A. V., & Suvorova, A. V. (2023). Atmospheric Effects of Magnetosheath Jets. Atmosphere, 14(1), 45. https://doi.org/10.3390/atmos14010045