MAFormer: A New Method for Radar Reflectivity Reconstructing Using Satellite Data
Abstract
:1. Introduction
- 1.
- This paper proposes a new transformer network, called MAFormer (Mixup-global with Axial-local attention Transformer), which includes two modules: the Mixup Global Attention Module (MGAM) and the Axial Local Attention Module (ALAM).
- 2.
- The MGAM extracts large-scale global-similarity features, while the ALAM is designed for small-scale local-singularity feature extraction. MAFormer, when combined with the vanilla transformer model, can accurately reconstruct radar reflectivity from single satellite data.
- 3.
- Quantitative and qualitative experiments were conducted, comparing the MAFormer model against state-of-the-art methods. The results of these experiments demonstrate the superiority of the proposed approach. Overall, this method offers a promising solution to the challenges of radar reconstruction and holds significant potential for further advancements in satellite-based data processing.
2. Materials
3. Methods
3.1. Preliminary
- (a)
- Encoder–Decoder: The transformer architecture is composed of an encoder and a decoder. The encoder processes the input feature, generating a series of representations capturing the contextual information of each element. The decoder takes the encoder’s output and generates the reconstructed output.
- (b)
- Multi-Head Attention: The self-attention mechanism is further enhanced by using multiple heads. Each head learns different relationships between positions in the input sequence, allowing the model to capture various forms of dependencies. The outputs of multiple attention heads are concatenated and linearly transformed to obtain the final representations.
- (c)
- Feed-Forward Neural Networks: Transformer models include feed-forward neural networks (FFNs) to process the attention-based representations. FFNs consist of multiple layers of fully connected networks, enabling the model to model complex non-linear relationships.
- (d)
- Residual Connections and Layer Normalization: To mitigate the vanishing gradient problem and improve gradient flow, residual connections are employed. Residual connections provide skip connections, allowing the model to bypass certain layers and retain valuable information. Layer normalization is applied after each sub-layer to stabilize the training process.
3.2. Overview
3.3. Mixup Global Attention Module
3.4. Axial Local Attention Module
3.5. Method Analysis
4. Results
4.1. Experiments Setting
4.2. Metrics
4.3. Quantitative Results
4.4. Qualitative Results
5. Discussion
5.1. Analysis of Satellite Channel Importance
5.2. Effectiveness of the Proposed Modules
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALAM | Axial Local Attention Module |
MGAM | Mixup Global Attention Module |
MAFormer | Transformer with MGAM and ALAM |
FAR | False Alarm Rate |
POD | Probability Of Detection |
CSI | Critical Success Index |
HSS | Heidke Skill Score |
MAE | Mean Absolute Error |
RMSE | Root Mean Squared Error |
PSNR | Peak Signal Noise Ratio |
SSIM | Structure SIMilarity |
CREF | Composite radar Reflectivity |
PRED | Predicted reflectivity |
References
- Yu, T.; Yang, R. Temporal Dynamic Network with Learnable Coupled Adjacent Matrix for Wind Forecasting. IEEE Geosci. Remote. Sens. Lett. 2023, 20, 1001605. [Google Scholar] [CrossRef]
- Yu, T.; Kuang, Q.; Zheng, J.; Hu, J. Deep Precipitation Downscaling. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1001405. [Google Scholar] [CrossRef]
- Yu, T.; Yang, R.; Huang, Y.; Gao, J.; Kuang, Q. Terrain-Guided Flatten Memory Network for Deep Spatial Wind Downscaling. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2022, 15, 9468–9481. [Google Scholar] [CrossRef]
- Yu, T.; Kuang, Q.; Hu, J.; Zheng, J.; Li, X. Global-Similarity Local-Salience Network for Traffic Weather Recognition. IEEE Access 2021, 9, 4607–4615. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, T.; Li, Z.; Wang, K.; Chen, Y.; Huang, Y.; Kuang, Q. Deep Quantified Visibility Estimation for Traffic Image. Atmosphere 2022, 14, 61. [Google Scholar] [CrossRef]
- Jena, K.K.; Bhoi, S.K.; Nayak, S.R.; Panigrahi, R.; Bhoi, A.K. Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification. Big Data Min. Anal. 2023, 6, 32–43. [Google Scholar] [CrossRef]
- Han, L.; Sun, J.; Zhang, W. Convolutional Neural Network for Convective Storm Nowcasting Using 3-D Doppler Weather Radar Data. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 1487–1495. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5617–5627. [Google Scholar]
- Yu, T.; Kuang, Q.; Yang, R. ATMConvGRU for Weather Forecasting. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1003805. [Google Scholar] [CrossRef]
- All convolutional neural networks for radar-based precipitation nowcasting. Procedia Comput. Sci. 2019, 150, 186–192. [CrossRef]
- Agrawal, S.; Barrington, L.; Bromberg, C.; Burge, J.; Gazen, C.; Hickey, J. Machine Learning for Precipitation Nowcasting from Radar Images. arXiv 2019, arXiv:1912.12132. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. 2015, 9351, 234–241. [Google Scholar]
- Hernández, E.; Sánchez-Anguix, V.; Julián, V.; Cámara, J.P.; Duque, N.D. Rainfall Prediction: A Deep Learning Approach. Lect. Notes Comput. Sci. 2016, 9648, 151–162. [Google Scholar]
- Lebedev, V.; Ivashkin, V.; Rudenko, I.; Ganshin, A.; Molchanov, A.; Ovcharenko, S.; Grokhovetskiy, R.; Bushmarinov, I.; Solomentsev, D. Precipitation Nowcasting with Satellite Imagery. In Proceedings of the International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2680–2688. [Google Scholar]
- Qiu, M.; Zhao, P.; Zhang, K.; Huang, J.; Shi, X.; Wang, X.; Chu, W. A Short-Term Rainfall Prediction Model Using Multi-task Convolutional Neural Networks. In Proceedings of the International Conference on Data Mining, New Orleans, LA, USA, 18–21 November 2017; pp. 395–404. [Google Scholar]
- Klocek, S.; Dong, H.; Dixon, M.; Kanengoni, P.; Kazmi, N.; Luferenko, P.; Lv, Z.; Sharma, S.; Weyn, J.A.; Xiang, S. MS-nowcasting: Operational Precipitation Nowcasting with Convolutional LSTMs at Microsoft Weather. arXiv 2021, arXiv:2111.09954. [Google Scholar]
- Sønderby, C.K.; Espeholt, L.; Heek, J.; Dehghani, M.; Oliver, A.; Salimans, T.; Agrawal, S.; Hickey, J.; Kalchbrenner, N. MetNet: A Neural Weather Model for Precipitation Forecasting. arXiv 2020, arXiv:2003.12140. [Google Scholar]
- Espeholt, L.; Agrawal, S.; Sønderby, C.K.; Kumar, M.; Heek, J.; Bromberg, C.; Gazen, C.; Hickey, J.; Bell, A.; Kalchbrenner, N. Skillful Twelve Hour Precipitation Forecasts using Large Context Neural Networks. arXiv 2021, arXiv:2111.07470. [Google Scholar]
- Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.; et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Yu, T. MetPGNet: Meteorological Prior Guided Network for Temperature Forecasting. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1004305. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Duan, M.; Xia, J.; Yan, Z.; Han, L.; Zhang, L.; Xia, H.; Yu, S. Reconstruction of the Radar Reflectivity of Convective Storms Based on Deep Learning and Himawari-8 Observations. Remote. Sens. 2021, 13, 3330. [Google Scholar] [CrossRef]
- Zhu, M.; Liao, Q.; Wu, L.; Zhang, S.; Wang, Z.; Pan, X.; Wu, Q.; Wang, Y.; Su, D. Multiscale Representation of Radar Echo Data Retrieved through Deep Learning from Numerical Model Simulations and Satellite Images. Remote Sens. 2023, 15, 3466. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Q.; Xue, Y.; Sun, F.; Li, J.; Zhen, X.; Lu, T. Radar Composite Reflectivity Reconstruction Based on FY-4A Using Deep Learning. Sensors 2023, 23, 81. [Google Scholar] [CrossRef] [PubMed]
- Lagerquist, R.; Stewart, J.Q.; Ebert-Uphoff, I.; Kumler, C. Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data. Mon. Weather. Rev. 2021, 149, 3897–3921. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Álvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Virtual, 6–14 December 2021; pp. 12077–12090. [Google Scholar]
- Ho, J.; Kalchbrenner, N.; Weissenborn, D.; Salimans, T. Axial Attention in Multidimensional Transformers. arXiv 2019, arXiv:1912.12180. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018; Volume 11211, pp. 833–851. [Google Scholar] [CrossRef]
Ground Truth | |||
---|---|---|---|
1 | 0 | ||
Prediction | 1 | True Positive (TP) | False Positive (FP) |
0 | False Negative (FN) | True Negative (TN) |
cls. | reg. | |||||||
---|---|---|---|---|---|---|---|---|
Method | FAR | CSI | POD | HSS | RMSE | MAE | PSNR | SSIM |
DeepLab | 0.345 | 0.324 | 0.390 | 0.401 | 7.491 | 9.658 | 28.433 | 0.502 |
UNet | 0.343 | 0.344 | 0.419 | 0.421 | 7.314 | 9.477 | 28.597 | 0.555 |
SegFormer | 0.367 | 0.371 | 0.473 | 0.441 | 7.278 | 9.442 | 28.629 | 0.498 |
Swin | 0.345 | 0.357 | 0.439 | 0.434 | 7.171 | 9.288 | 28.773 | 0.540 |
MAFormer (ours) | 0.327 | 0.369 | 0.450 | 0.451 | 7.110 | 9.231 | 28.826 | 0.604 |
No. | Channel | RMSE | MAE | PSNR | SSIM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C8 | C9 | C10 | C11 | C13 | C14 | C16 | |||||
(a) | √ | √ | √ | √ | 9.916 | 7.712 | 28.204 | 0.591 | |||
(b) | √ | √ | √ | √ | 10.123 | 7.826 | 28.024 | 0.529 | |||
(c) | √ | √ | √ | 9.776 | 7.590 | 28.328 | 0.566 | ||||
(d) | √ | √ | √ | √ | √ | √ | 9.314 | 7.171 | 28.748 | 0.578 | |
(e) | √ | √ | √ | √ | √ | √ | 9.299 | 7.161 | 28.762 | 0.620 |
RMSE | PSNR | MAE | SSIM | |
---|---|---|---|---|
Swin | 9.288 | 28.773 | 7.171 | 0.540 |
+ ASM | 9.273 ↓ | 28.786 ↑ | 7.148 ↓ | 0.586 ↑ |
+ MSM | 9.239 ↓ | 28.818 ↑ | 7.131 ↓ | 0.588 ↑ |
MA | 9.231 ↓ | 28.826 ↑ | 7.110 ↓ | 0.604 ↑ |
FAR | POD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | 10 | 20 | 30 | 40 | 50 | |
Swin | 0.110 | 0.218 | 0.345 | 0.419 | 0.601 | 0.912 | 0.731 | 0.439 | 0.090 | 0.006 |
+ ASM | 0.109 ↓ | 0.215 ↓ | 0.349 | 0.403 ↓ | 0.596 ↓ | 0.907 | 0.732 ↑ | 0.467 ↑ | 0.092 ↑ | 0.004 |
+ MSM | 0.109 ↓ | 0.216 ↓ | 0.342 ↓ | 0.409 ↓ | 0.547↓ | 0.909 | 0.734 ↑ | 0.446 ↑ | 0.103 ↑ | 0.008 ↑ |
MA | 0.108↓ | 0.214↓ | 0.327↓ | 0.382↓ | 0.510↓ | 0.906 | 0.731 | 0.450 ↑ | 0.107 ↑ | 0.009 ↑ |
CSI | HSS | |||||||||
10 | 20 | 30 | 40 | 50 | 10 | 20 | 30 | 40 | 50 | |
Swin | 0.819 | 0.607 | 0.357 | 0.085 | 0.006 | 0.448 | 0.528 | 0.434 | 0.148 | 0.011 |
+ ASM | 0.816 | 0.610 ↑ | 0.373 ↑ | 0.086 ↑ | 0.004 | 0.448 | 0.532 ↑ | 0.449 ↑ | 0.151 ↑ | 0.007 |
+ MSM | 0.818 | 0.611 ↑ | 0.362 ↑ | 0.096 ↑ | 0.007 ↑ | 0.450 ↑ | 0.533 ↑ | 0.440 ↑ | 0.167 ↑ | 0.015 ↑ |
MA | 0.816 | 0.610 ↑ | 0.369 ↑ | 0.101 ↑ | 0.009 ↑ | 0.451 ↑ | 0.533 ↑ | 0.451 ↑ | 0.174 ↑ | 0.018 ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Huang, Y.; Yu, T.; Chen, Y.; Li, Z.; Kuang, Q. MAFormer: A New Method for Radar Reflectivity Reconstructing Using Satellite Data. Atmosphere 2023, 14, 1723. https://doi.org/10.3390/atmos14121723
Wang K, Huang Y, Yu T, Chen Y, Li Z, Kuang Q. MAFormer: A New Method for Radar Reflectivity Reconstructing Using Satellite Data. Atmosphere. 2023; 14(12):1723. https://doi.org/10.3390/atmos14121723
Chicago/Turabian StyleWang, Kuoyin, Yan Huang, Tingzhao Yu, Yu Chen, Zhimin Li, and Qiuming Kuang. 2023. "MAFormer: A New Method for Radar Reflectivity Reconstructing Using Satellite Data" Atmosphere 14, no. 12: 1723. https://doi.org/10.3390/atmos14121723
APA StyleWang, K., Huang, Y., Yu, T., Chen, Y., Li, Z., & Kuang, Q. (2023). MAFormer: A New Method for Radar Reflectivity Reconstructing Using Satellite Data. Atmosphere, 14(12), 1723. https://doi.org/10.3390/atmos14121723