Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Input and Observed Data
2.3. Model Description and Development
2.4. Model Validation
2.4.1. Correlation Analysis
2.4.2. Parameter Sensitivity Analysis
2.4.3. Redundancy Analyses
3. Results
3.1. Soil Water Content Conditions
3.2. ET Simulation Results
3.3. LAI and NPP Simulation
3.4. Parameter Sensitivity
3.5. RDA Analysis
4. Discussion
4.1. Improvement of the IBIS Model
4.2. Parameters Affecting the Simulation Results
4.3. Potential Effects of Climate Change on the Carbon Cycle
5. Conclusions
- The O–IBIS model generally underestimates the soil water content in all stations. After adding the soil erosion process scheme and adjusting the dynamic roughness, the ability of the IBIS model to simulate soil water content was greatly improved, though still with underestimated bias (RE = −0.013 m3/m3). These results indicate that soil erosion plays an important role in controlling soil hydrothermal regimes in arid regions. We should pay attention to the reliability of the Z0m value in the future simulation of the barren region with IBIS.
- The underestimation of NPP and LAI was reduced by 68.7% and 88.5%, respectively, through the adjustment of the SLA. The modified model (RU–IBIS) accurately reproduces the vegetation growth conditions in the cropland region and does a poor job of constraining the conditions in the desert. The results show that the complexities of applying to heterogeneous sites remain, and it needs further improvement in a wider range area.
- Sensitivity tests showed that the soil hydrothermal conditions and ET were sensitive to changes in the Z0m values. SLA largely affects the simulated NPP and NEE at all stations. An increase in the SLA produces corresponding increases in the NPP and NEE values.
- We infer that the temperature, radiation, and soil water content dictate the inter–annual variability of the carbon emission (absorption) strength in this simulation. Moreover, any soil water content lost during soil erosion may exacerbate water deficits and thus reduce NPP. However, it is unknown whether the arid region erosion will result in a net increase or decrease in the total carbon emissions in this region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Dai, A.; Wei, Y.; Kang, L. Drylands face potential threat under CO2 global warming target. Nat. Clim. Chang. 2017, 7, 417–422. [Google Scholar] [CrossRef]
- Sun, D.; Li, Y.; Zhao, X.; Luo, Y.; Bi, J. Effects of enclosure and grazing on net ecosystem carbon exchange in sandy grasslands of Horqin The effect of enclosure and grazing on the net ecosystem carbon exchange of kerchin sandy grassland. China Desert 2016, 36, 93–102. [Google Scholar]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Schuur, E.A.; Mack, M.C. Ecological response to arid region thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 279–301. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Yi, S.; Wang, X.; Qin, Y.; Xiang, B.; Ding, Y. Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and arid region degradation: A modeling perspective. Environ. Res. Lett. 2014, 9, 074014. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, Y.; Yang, D.; Dafflon, B.; Lei, H.; Yang, H. Satellite–based simulation of soil freezing/thawing processes in the northeast Tibetan Plateau. Remote Sens. Environ. 2019, 231, 111269. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, D.; Ciais, P.; Huang, C.; Viovy, N.; Kageyama, M. Response of vegetation cover to CO2 and climate changes between Last Glacial Maximum and pre–industrial period in a dynamic global vegetation model. Quat. Sci. Rev. 2019, 218, 293–305. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth–Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef]
- Van Oost, K.; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; Mccarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Maavara, T.; Lauerwald, R.; Regnier, P.; Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 2017, 8, 15347. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Hoffmann, T.; Six, J.; Kaplan, J.O.; Govers, G.; Doetterl, S.; Van Oost, K. Human–induced erosion has offset one–third of carbon emissions from land cover change. Nat. Clim. Chang. 2017, 7, 345–349. [Google Scholar] [CrossRef]
- Beer, C.; Lucht, W.; Gerten, D.; Thonicke, K.; Schmullius, C. Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ–DGVM). Glob. Biogeochem. Cycles 2007, 21, GB1012. [Google Scholar] [CrossRef]
- Wania, R.; Ross, I.; Prentice, I.C. Integrating peatlands and arid region into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Glob. Biogeochem. Cycles 2009, 23, GB3015. [Google Scholar]
- Wang, H.; Ma, M.; Wang, X.; Yuan, W.; Song, Y.; Tan, J.; Huang, G. Seasonal variation of vegetation productivity over an alpine meadow in the Qinghai–Tibet Plateau in China: Modeling the interactions of vegetation productivity, phenology, and the soil soil erosion–thaw process. Ecol. Res. 2013, 28, 271–282. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Delire, C.; Foley, J.A. Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting environments. J. Geophys. Res. Atmos. 1999, 104, 16895–16909. [Google Scholar] [CrossRef]
- Twine, T.E.; Kucharik, C.J. Evaluating a terrestrial ecosystem model with satellite information of greenness. J. Geophys. Res. Atmos. 2008, 113, G03027. [Google Scholar] [CrossRef]
- Zipper, S.C.; Soylu, M.E.; Kucharik, C.J.; Loheide II, S.P. Quantifying indirect groundwater–mediated effects of urbanization on agroecosystem productivity using MODFLOW–AgroIBIS (MAGI), a complete critical zone model. Ecol. Model. 2017, 359, 201–219. [Google Scholar] [CrossRef]
- Liu, J.; Price, D.T.; Chen, J.M. Nitrogen controls on ecosystem carbon sequestration: A model implementation and application to Saskatchewan, Canada. Ecol. Model. 2005, 186, 178–195. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, D.; Wu, S.; Dai, E. Validation of the Integrated Biosphere Simulator in simulating the potential natural vegetation map of China. Ecol. Res. 2011, 26, 917–929. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Q.; Wang, C. Simulating net primary production and soil–surface CO2 flux of temperate forests in Northeastern China. Scand. J. For. Res. 2011, 26, 30–39. [Google Scholar] [CrossRef]
- Luo, G.; Yin, G. Net Primary Productivity of Farmland Ecosystem in Xinjiang: The Spatio–temporal Dynamics and Its Response to Climate Change Based on Agro–IBIS Model. Chin. Agric. Sci. Bull. 2018, 34, 91–98. [Google Scholar]
- Cao, X.; Zhou, Z.; Chen, X.; Shao, W.; Wang, Z. Improving leaf area index simulation of IBIS model and its effect on water carbon and energy–A case study in Changbai Mountain broadleaved forest of China. Ecol. Model. 2015, 303, 97–104. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, P.; Zhao, J.; Wang, H.; Wang, B.; Su, S.; Peng, C. Trait–based climate change predictions of vegetation sensitivity and distribution in China. Front. Plant Sci. 2019, 10, 908. [Google Scholar] [CrossRef]
- Cheng, N.N.; He, H.M.; Lu, Y.J.; Yang, S.Y. Coupling Analysis of Hydrometeorology and Erosive Landforms Evolution in Loess Plateau, China. Adv. Meteorol. 2016, 2016, 9732864. [Google Scholar] [CrossRef]
- Dong, M.; Ye, X.H.; Chu, Y. Ecosystem Positioning Observation and Research Dataset of China. Grassland and Desert Ecosystems Volume—Inner Mongolia Erdos Station: 2004~2006; China Agricultural Publishing House: Beijing, China, 2011. [Google Scholar]
- Liu, W.Z.; Dang, T.H. Chinese Ecosystem Positioning Observation and Research Dataset–Farmland Ecosystem Volume—Changwu Station, Shaanxi (1998–2008); China Agricultural Publishing House: Beijing, China, 2012. [Google Scholar]
- Liu, G.B.; Li, Q.X.; Chen, Y.M. China Ecosystem Positioning Observation and Research Dataset/Farmland Ecosystem—Shaanxi Ansai Station; China Agricultural Press: Beijing, China, 2012. [Google Scholar]
- Li, X.R.; Zhou, H.Y.; Wang, X.P. China Ecosystem Positioning Observation and Research Dataset/Grassland and Desert Ecosystems—Ningxia Shapotou Station; China Agricultural Press: Beijing, China, 2010. [Google Scholar]
- Kucharik, C.J.; Foley, J.A.; Delire, C.; Fisher, V.A.; Coe, M.T.; Lenters, J.D.; Gower, S.T. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob. Biogeochem. Cycles 2000, 14, 795–825. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Amthor, J. The role of maintenance respiration in plant growth. Plant Cell Environ. 1984, 7, 561–569. [Google Scholar] [CrossRef]
- Botta, A.; Viovy, N.; Ciais, P.; Friedlingstein, P.; Monfray, P. A global prognostic scheme of leaf onset using satellite data. Glob. Chang. Biol. 2000, 6, 709–725. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.; Dai, Y.; Li, R.; Pang, Q.; Yao, J. Representing permafrost properties in CoLM for the Qinghai–Xizang (Tibetan) Plateau. Cold Reg. Sci. Technol. 2013, 87, 68–77. [Google Scholar] [CrossRef]
- Lamparter, A.; Bachmann, J.; Goebel, M.O.; Woche, S.K. Carbon mineralization in soil: Impact of wetting–drying, aggregation and water repellency. Geoderma 2009, 150, 324–333. [Google Scholar] [CrossRef]
- Fischer, G.R.; Costa, M.H.; Murta, F.Z.; Malhado, A.C.; Aguiar, L.J.; Ladle, R.J. Multi–site land surface model optimization: An exploration of objective functions. Agric. For. Meteorol. 2013, 182, 168–176. [Google Scholar] [CrossRef]
- Chang, K.; Price, D.; Chen, J.M.; Kurz, W.; Boisvenue, C.; Hogg, E.; Hember, R. Simulating impacts of water stress on woody biomass in the southern boreal region of western Canada using a dynamic vegetation model. Agric. For. Meteorol. 2014, 198, 142–154. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, X.; Zhu, Z.; Zhang, R.; Tian, J.; Liu, Y.; Yuan, G. Surface roughness length dynamic over several different surfaces and its effects on modeling fluxes. Sci. China Ser. D Earth Sci. 2006, 49, 262–272. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 1997, 94, 13730–13734. [Google Scholar] [CrossRef]
- Weiher, E.; Van Der Werf, A.; Thompson, K.; Roderick, M.; Garnier, E.; Eriksson, O. Challenging Theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 1999, 10, 609–620. [Google Scholar] [CrossRef]
- Tian, G.; Zhu, Z.; Li, Y. Effects of clipping, fertilizing, and watering on compensatory growth of Elymusnutans. Chin. J. Ecol. 2010, 29, 869–875. [Google Scholar]
- Qi, W.; Guo, S.; Cui, X.; Yang, M.; Zhang, Y.; Du, G.; Bu, H. Variation of seed mass and SLA of 63 plant species in different habitats at various altitudes on the eastern Loess Plateau. Acta Prataculturae Sin. 2012, 21, 42–50. [Google Scholar]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Q.; Peng, C.; Wang, H.; Chen, H. From plant functional types to plant functional traits: A new paradigm in modelling global vegetation dynamics. Prog. Phys. Geogr. 2015, 39, 514–535. [Google Scholar] [CrossRef]
- Yu, M.; Wu, B.; Zeng, H.; Xing, Q.; Zhu, W. The Impacts of Vegetation and Meteorological Factors on Aerodynamic Roughness Length at Different Time Scales. Atmosphere 2018, 9, 149. [Google Scholar] [CrossRef]
- Vendramini, F.; Díaz, S.; Gurvich, D.E.; Wilson, P.J.; Thompson, K.; Hodgson, J.G. Leaf traits as indicators of resource–use strategy in floras with succulent species. New Phytol. 2002, 154, 147–157. [Google Scholar] [CrossRef]
- Park, H.; Iijima, Y.; Yabuki, H.; Ohta, T.; Walsh, J.; Kodama, Y.; Ohata, T. The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia. J. Geophys. Res. Atmos. 2011, 116, D15102. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Z.; Wang, P.; Wu, T.; Zhang, Y.; Yin, J.; Yu, J.; Wang, H.; Guan, X.; Xu, H.; et al. Plant–groundwater interactions in drylands: A review of current research and future perspectives. Agric. For. Meteorol. 2023, 341, 109636. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Hu, H.; Wu, Q. The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Loess Plateau. Environ. Earth Sci. 2010, 60, 537–548. [Google Scholar] [CrossRef]
Site | SPT | CW | AS | ERDS | |
Observation period | 2001–2008 | 2004–2008 | 2004–2006 | 2005 | |
Vegetation type | cropland | cropland | cropland | desert | |
Latitude | N° | 37°27′ | 35°12′ | 36°51′ | 39°29′ |
Longitude | E° | 104°57′ | 107°40′ | 109°19′ | 110°11′ |
Elevation | m | 1250 | 1200 | 1068 | 1290 |
Mean precipitation | mm | 186 | 580 | 500 | 310 |
Mean temperature | °C | 9.6 | 9.1 | 8.8 | 6 |
Stations | 10 cm | 30 cm | 50 cm | 100 cm | |||||
RU–IBIS | O–IBIS | RU–IBIS | O–IBIS | RU–IBIS | O–IBIS | RU–IBIS | O–IBIS | ||
SPT | r | 0.71 | 0.45 | 0.88 | 0.78 | 0.91 | 0.82 | 0.92 | 0.90 |
R2 | 0.51 | 0.20 | 0.78 | 0.62 | 0.84 | 0.67 | 0.84 | 0.82 | |
RMSE | 3.23 | 4.42 | 0.71 | 1.42 | 0.60 | 1.43 | 1.05 | 3.58 | |
RE | −0.08 | 0.09 | −0.12 | 0.17 | −0.12 | −3.02 | 0.17 | −0.04 | |
AS | r | 0.87 | 0.71 | 0.88 | 0.58 | 0.86 | 0.60 | 0.82 | 0.59 |
R2 | 0.75 | 0.51 | 0.77 | 0.33 | 0.73 | 0.36 | 0.68 | 0.34 | |
RMSE | 2.67 | 3.62 | 1.77 | 5.60 | 1.81 | 5.25 | 1.89 | 4.81 | |
RE | 0.07 | −0.01 | −0.03 | −0.46 | 0.08 | −0.31 | −0.07 | −0.43 | |
CW | r | 0.94 | 0.88 | 0.97 | 0.46 | 0.90 | 0.65 | 0.91 | 0.63 |
R2 | 0.88 | 0.77 | 0.94 | 0.21 | 0.82 | 0.42 | 0.82 | 0.40 | |
RMSE | 5.69 | 7.26 | 1.44 | 5.29 | 0.64 | 3.78 | 1.06 | 3.69 | |
RE | 0.27 | 0.37 | −0.05 | 0.09 | −0.11 | −0.42 | −0.09 | −0.13 | |
ERDS | r | 0.84 | 0.34 | 0.87 | 0.74 | 0.91 | 0.60 | 0.76 | 0.23 |
R2 | 0.70 | 0.11 | 0.76 | 0.55 | 0.83 | 0.35 | 0.58 | 0.06 | |
RMSE | 1.12 | 1.67 | 0.29 | 0.32 | 0.15 | 0.26 | 0.34 | 0.73 | |
RE | −0.08 | −0.19 | −0.10 | −0.39 | 0.07 | −2.91 | 0.19 | −0.35 |
SPT | AS | CW | ||||||||||
r | R2 | RMSE | RE | r | R2 | RMSE | RE | r | R2 | RMSE | RE | |
RU–IBIS | 0.61 | 0.38 | 2.06 | −0.05 | 0.83 | 0.69 | 2.07 | −0.20 | 0.86 | 0.75 | 0.75 | 0.17 |
O–IBIS | 0.23 | 0.05 | 2.97 | −23.93 | 0.41 | 0.17 | 3.49 | 0.76 | 0.59 | 0.35 | 1.18 | 0.95 |
SPT | AS | ||||||||
r | R2 | RMSE | RE | r | R2 | RMSE | RE | ||
LAI | RU–IBIS | 0.94 | 0.88 | 0.60 | 0.02 | 0.96 | 0.92 | 0.47 | −0.06 |
O–IBIS | 0.77 | 0.60 | 1.39 | 0.56 | 0.63 | 0.40 | 1.46 | −9.67 | |
NPP | RU–IBIS | 0.96 | 0.92 | 474.11 | 0.29 | 0.93 | 0.87 | 318.18 | −0.38 |
O–IBIS | 0.23 | 0.05 | 1188.11 | −0.43 | 0.81 | 0.65 | 467.82 | 0.38 |
Sites | Parameters | Value | Sensitivity (+20%) | Sensitivity (−20%) | ||||||||||
ST | SW | ET (%) | NPP | NEE | Re | ST | SW | ET (%) | NPP | NEE | Re | |||
SPT | Z0m (m) | 85 | −26.68 ※ | 86.43 | 42.71 | 1.02 | −18.25 | 38.07 | −9.62 | 38.02 | 16.84 | −0.31 | −23.09 | 46.37 |
SLA (m2/kg) | 6.85 | 0.17 | 0.00 | 0.01 | −0.01 | −0.15 | 0.01 | −1.20 | −0.01 | −0.02 | 0.03 | 0.28 | −0.02 | |
AS | Z0m (m) | 66.4 | −0.42 | −28.13 | −15.64 | 0.16 | −10.70 | −32.72 | 8.35 | 0.39 | 0.13 | −0.17 | 0.56 | 0.07 |
SLA (m2/kg) | 3.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.31 | 0.01 | 0.00 | 0.01 | −0.01 | 0.00 | |
CW | Z0m (m) | 80 | −1.30 | −15.81 | −5.27 | 0.49 | −62.27 | −23.44 | 5.69 | 44.15 | 22.12 | −0.27 | 10.93 | 41.47 |
SLA (m2/kg) | 4.34 | 0.96 | 0.00 | 0.01 | −0.02 | 0.02 | 0.00 | −0.37 | 0.00 | −0.02 | 0.01 | −0.05 | −0.01 | |
ERDS | Z0m (m) | 40.2 | 13.15 | −22.28 | 9.20 | 0.60 | −53.31 | 30.55 | 3.17 | 0.10 | 0.10 | −0.11 | −4.06 | 0.12 |
SLA (m2/kg) | 54.05 | 22.19 | −22.16 | 9.46 | 0.34 | −54.24 | 30.81 | −4.83 | −0.17 | −0.09 | 0.15 | 7.20 | −0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, C.; Ma, W.; Wang, W.; Li, H. Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes. Atmosphere 2023, 14, 1724. https://doi.org/10.3390/atmos14121724
Zhang J, Zhang C, Ma W, Wang W, Li H. Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes. Atmosphere. 2023; 14(12):1724. https://doi.org/10.3390/atmos14121724
Chicago/Turabian StyleZhang, Jinliang, Chao Zhang, Wensi Ma, Wei Wang, and Haofei Li. 2023. "Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes" Atmosphere 14, no. 12: 1724. https://doi.org/10.3390/atmos14121724
APA StyleZhang, J., Zhang, C., Ma, W., Wang, W., & Li, H. (2023). Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes. Atmosphere, 14(12), 1724. https://doi.org/10.3390/atmos14121724